
DEVELOPMENT OF . HIbH LEVEL LANGUAGE AND CROSS-COMPILIR FOR THE-ETCf(.1

Q1LAGSSIFIED AFTC-79-161T NL

ae/ //0 /0

I .. DEVELOPMENT OF

go -

~ljamWard atcher I~-

I

J. S. Boland, III J. R. Heath, ChairmanIAssocate Professor Associate Professor

Electrical Engineering Electrical EngLneering

I

B. D. Carroll Paul F. Parks, Dean

Associate Professor Graduate School

Electrical Engineering

ii -v'lese

05

________80 10 14 167

UNCLASS

7 SECURITY CLASSIICATION4 OF THIS PAGE (When Data Entred), E DIS R C I N

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
IREPORT NUMBER 12. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

79-161T V A- ________________

4. TITLE (and Subtitle) S. TYPE OP REPORT & PERIOD COVERED

Development of a High Level Language and Cross-
Compiler for the Intel 8080 Microprocessor Thesis

6. PERFORMING 01G. REPORT NUMBER

7. AUTNOR(q) S. CONTRACT OR GRANT NUMBER(e)

William Ward Hatcher

9 . 'J.BFORMING ORGANIZATION NAME AND ADDRESS 1G. PROGRAM ELEMENT. PROJECT, TASK
(AFIT)Student at: Auburn University, Alabama AREA & WORK UNIT NUMBERS

It. CONTROLLING OFFICE NAME AND ADDRESS 12. RIEPORT DATE

AFIT/NR 7 June 1979

WI$AFB OH 45433 13. NUMBER OF PAGES

t4. MONITORING AGENCY NAME & ADDRESS(i different from Controlling Office) IS. SECURITY CLASS. (of tio report)

UNC LASS

ISO. DECL ASSI FIC ATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. ISTRIBUTION STATBt T&gA trpf"!-~c 20. It different fromt Report)

S e- 2 3 SEP 1980

20.KE ARSTRC (C.f lnue on reve..e I ode i nocea..tmy mid Identify by black nuemher)

Attached

00 1 jAmn5 1473 BimotloN OF I Nov 65 s oes a~ UNCLASS
SECURITY CLAWPICATION OF iMIU PAGO (IS.. Deec £wefM*

DEVELOPMENT OF

A HIGH LEVEL LANGUAGE AND CROSS-COMPILER

FOR THE INTEL 8080 MICROPROCESSOR

William Ward Hatcher

A Thesis uStification

Submitted to

the Graduate Faculty of Distri butiton

Auburn University ailt ~ Code

in Partial Fulfillment of the D~ist. special

Requirements for the

Degree of ...

Master of Science

Auburn, Alabama

June 7, 1979

I~DEVELOPMENT OF

A HIGH LEVEL LANGUAGE AND CROSS-COMPILER

I FOR THE INTEL 8080 MICROPRUCESSOR

I William Ward Hatcher

I Permission is herewith granted to Auburn University to make
copies of this thesis at its discretion, upon the request of
individuals or institutions and at their expense. The authorI reserves all publication rights.

Signature of Author

Date

1 Copy sent to:

jName Date

IEg

VITA

I William Ward Hatcher, son of Gatewood Matthews and Any (Vaughan)

Hatcher, was born May 18, 1944, in York, Alabama. He attended Sumter

County Public Schools and graduated from Sumter County High School,

York, in 1962. In September, 1962, he entered Livingston University

and received the degree of Bachelor of Science (mathematics) in

1 December, 1966. In Jcnuary, 1974, he entered graduate school at

I Auburn University in Montgomery and received the degree of Master

of Public Administration in August, 1976. In September, 1976, he

entered graduate school at Auburn University and began work toward

his Master of Science degree ini Electrical Engineering. He married

Diane, daughter of Sherman Alfred and Mary (Drake) Harris in

November, 1966. They have one daughter, Stephanie Elizabeth and one

son, William Todd.

Ii

I THESIS ABSTRACT

DEVELOPMENT OF A HIGH LEVEL LANGUAGE AND

I CROSS-COMPILER FOR THE INTEL 8080 MICROPROCESSOR

I William W. Hatcher

Master of Science, June 7, 1979
(B.S., Livingston University, 1966)

(M.P.A., Auburn University in Montgomery, 1976)

95 Typed Pages

I Directed by J. R. Heath

This paper describes the development of a high level language and

cross-compiler written in BASIC PLUS for the Intel 8080 microprocessor.

I 'The language is a general purpose language which can be entered online

on a DEC PDP-11/40 minicomputer and cross compiled f or the 18080. The

cross-compiler follows the general pattern of most high level language

j compilers and consists of a scanner, a parser, semantic routines and

code generation procedures. The cross-compiler accepts the input lan-

guage and produces assembly language which is provided to a cross-

assembler to generate machine code either on paper tape or a disk file.

I This code is then loaded into the 18080 for execution.

The basic advantage of the high level language and cross-compilerI is that it provides a user the capability to develop a program without

having to know the details of microprocessor assembly language. Also,

I v

. program development aids available on the DEC PDP-11/40 minicomputer

with an RSTS/E operating system are made available to the microprocessor

II
programmer ..

vi

M "Iwo

I
I

I TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

I. INTRODUCTION 1

General Features of AU78
Practical Applications
Development of AU78 Routines

II. THE SCANNERi. .. 11

III. THE PARSER 16

Symbol and String Tables

IV. SEMANTIC ROUTINES/CODE GENERATION 23

WRITE Statement
READ Statement

GOTO/GOSUB Statements
RETURN Statement
MOVE-TO Statement
COMPUTE Statement
END Statement
IF-THEN-ELSE Statement

V. SAMPLE AU78 PROGRAM AND LISTING 46

VI. CONCLUSION 57

REFERENCES 59

APPENDIX A 61

APPENDIX B 71

II
~vii

LIST OF TABLES

1. AU78 Grammar........... 1

2. Key Word, Delimiter and Operator List. 14

3. Example Scan of a Sentence 14

4. Program Operation 47

5. Program Source Listing. 48

I6. Program Generated Object Code. 49

Iii

I
I
I
I LIST OF FIGURES

1. Operational Flow Process 3

2. Flowchart of Scanner 13

3. Syntax Tree for Sample Sentence 17

I 4. Flowchart of Parser 21

5. Semantic Routine 24

6. WRITE Statement 28

7. READ Statement 30

8. GOTO Statement 31

I 9. GOSUB Statement 32

10. RETUR4 Statement 33

11. MOVE-TO Statement 35

12. COMPUTE Statement 36

13. Multiply/Division Subroutine 38

14. Parenthesis Subroutine 41

15. END Statement 42

I 16. IF-THEN-ELSE Statement 45

I
I
I

| ix

I

I

I I. INTRODUCTION

Since the advent of the microcomputer in 1971, a new dimension in

computing capability has been opened in the world of electronics. The

microcomputer is a relatively inexpensive computer which, when compared

to machines of 15 to 20 years ago, provides a tremendous amount of

I computing power for the dollar and has revolutionized the world of

automation. However, one of the limitations of the microcomputer has

been the limited availability of high level languages. Consequently,

most programming is accomplished through assembly language. The use of

assembly language is popular because of the obvious relation between

j the source and the object code. Also, memory and instruction usage is

entirely under the control of the programmer and macros enable standard

I code sequences to be written and debugged once. However, with the

i rapidly falling price of memory and processors and the high cost of

asseuCy language level software development, there is increasing

pressure to use more economical methods of code generation since when

in assembly language, much time must be spent in using the detail

j procedures of the language; especially in the relatively weak micro-

computer assembly languages. 1Additionally, interpretative languages

I such as BASIC do not offer the best solution since they execute slower

j than compiler generated code. Therefore, high level languages offer an

attractive alternative to machine or assembly languages.

I 2
One of the primary advantages of a high level language is the lack

I of the requirement that the programmer needs to know the architecture of

the machine. It is the compiler which handles registers, storage alloca-

tion and data conversions. 2Also, symbolic variables increase the read-

ability of the program; programmer productivity is increased; doculmenta-

tion is improved through a more understandable program; maintenance,

I modification and debugging are facilitated; and transportability is im-

proved. As with most other things, there are always drawbacks. Primary

among these is the additional memory required with high level languages

(although with lowering costs it is not a important as it once was).

Also, if a language is not properly suited for the purpose, the lan-

3
guage may become a liability rather than an asset. However, with all

factors considered, there is a definite need for the development of high

1 level languages for microcomputers.

i This thesis will discuss the development of such a language (AU78)
and cross-compiler for programming an Intel 8080 based microcomputer.

1 This high level language is designed to provide the capability for

accomplishing basic computing operations to the programmer through the

use of the PDP-11/40 RSTS/E on-line time-sharing operating systems. It

was designed with a combination of BASIC and COBOL type statements and

to be on a par computationally with languages such as Tiny BASIC. 4The

major purpose of the language is to provide an easier method of programming

the 18080. It offers the unique capability of developing a program

directly on-line through the PDP-ll. The cross-compiler -wll accept

AU78 source code, which will be compiled into 18080 assembly language,

I

1 3
which in turn is passed to a cross-assembler to generate machine

language on a paper tape or a disk file. Figure 1 depicts the

operational flow process.

I
AU78I/
SourceCodeE

AU78,
Cross-
compiler

INTEL
8080

Assembly

ASMBLR
Cross-
assemblerI /-

I Machine
:Machine Code
Code

Figure 1. Operational flow process.

I

I

$

1 4
This is a very significant feature in that a programmer can very

I quickly write a short program to run on the 18080. Further, AU78 is

designed in a modular manner such that it can be expanded to include

additional specific requirements by adding subroutines for that purpose.

Another reason for the design and development of the language was

so the author could gain a greater understanding and knowledge of the

problems and trade-of fs encountered when developing high level languages

for microcomputers and subsequent cross-compilers for execution on mini-

I computers with time-share operating systems.

I General Features of AU78

AU78 provides a variety of features to the programmer which are

I common to most higher level languages available on larger computer sys-

tems. The first to consider would be the input/output features. The

AU78 compiler accepts input values from +32,767 10 to -32,768lO.* Multiple

I values can be input through the calling of the input subroutine and values

can either be used immediately or stored for later use. The output con-

I sists of either variable values or strings with up to 130 characters for

use with a full line printer. The language provides for assigning

specific values to variables or if it is not specified, the value of0

j will automatically be assigned. The computational operations include

multiplication, division, addition, and subtraction and the use of

parenthesis to allow for multiple levels of operations. In all equations,

the proper order of precedence is insured. Conditional statements allow

I expressions or variables or integers or a combination of them all to be

3 evaluated to determine if one value is greater than, less than, greater

I 5

than or equal to, less than or equal to, not equal to or equal to

another. The results of these comparisons will be incorporated into the

logical operation of an IF-THEN-ELSE type statement. In the IF-THEN-ELSE

statement, the ELSE is optional and the next sentence will be executed

if it is not present and the THEN condition fails.

When coding a program, line numbers are optional and statements may

be labeled to provide for branching. The language further provides for

transfer of data internally and transfer of control through branching or

calling subroutines. Data to be used in subroutines is made available

through variable storage areas.

General type statements include the following:

I READ variable

WRITE variable

I WRITE string

IF (expression-variable-integer) condition (expression-variable-

integer) THEN statement ELSE statement

MOVE (variable-integer) TO variable

GOTO label

I GOSUB label

RETURN

COMPUTE expression - variable

The major limitations of AU78 include the ability to rapidly input

large volumes of data; although with additional subroutines, both mag-

netic tape, cards and disk could be used for input and output. The AU78

cross-compiler cannot handle floating-point numbers or double-precision

arithmetic operations. Floating-point was investigated as a viable

apt.Ia

I 6
capability for inclusion in AU78 but was not included for several reasons.

The first was because the 18080 has no built-in hardware provisions for

floating-point which would be required for efficient implementation. To

offer any advantages over the implemented fixed-point number format, a

I thirty-two bit number (one sign bit, seven exponent bits and twenty-four

mantissa bits) would be required for the representation of each operand.

In the 18080, this would require four eight bit registers per operand

leaving only two registers plus the accumulator. Since most all compu-

tations must be accomplished in the accumulator and only one full operand

at a time can fit in the working registers of the 18080, the number of

data manipulations and memory transfers required by simple double operand

I arithmetic functions make the execution of floating-point arithmetic

function very slow and inefficient except in the case of special purpose

applications. For example, to execute a simple two operand addition

would require approximately one hundred program steps. Multiplication

and division would likewise require an excessive number of program steps

I and a proportional increase in execution time. Lengthy, complex mathe-

matical operations could not be accomplished with any real speed.
6

I Finally, a smaller sixteen bit floating-point number format could have

been developed more effectively, but the precision of the resulting

operand values would have been no greater than what was available

using an integer format.

Another limitation exists in string manipulation in that concate-

I nation of strings cannot be accomplished. It should be noted that in

I 7
the existing advanced languages for microcomputers such as PL/M,

IPL/M68000, Tiny BASIC and FORT/80 7 many and even more of these same
I limitations exist.

Practical Applications

I As stated previously, one of the main reasons for developing AU78

was to provide an easier method of programming the 18080 and to provide

this capability through the PDP-11/40 RSTS/E operating system, complete

1 with its full editing capabilities. one of the most common applica-

tions envisioned for the languages was to provide users a handy,

I readily available mechanism for writing general purpose programs for

the 18080 without having to fully understand the assembly language of

the 18080. Rather than spending time learning the details of the

fassembly language, the user could spend that time in problem solving. 8

This also holds true of even the experienced 18080 programmer and can

I save much time and effort especially considering the poor diagnostics

associated with the available assemblers and cross-assemblers. A user

I can write a program and create a paper tape or a disk file and load the

program directly into the 18080 and operate it in an on-line environment

In a problem solving manner. The language as currently designed is

I especially good at applications where computations are performed based

on input data. Examples of this might include interest rate calcula-

I tions, income tax computations, budgetary projections and various other

general business type applications.

Aother major consideration in the development of the language and

[compiler is for use by the Air Force. The Air Force has recently begun

* 8

acquiring PDP-lls and is moving into the use of microcomputers. At the

I author's assignment at the Air Force Data Systems Design Center, a

new PDP-ll has been acquired. The Air Force-wide policy is to program

all machines as much as possible in a high level language. Because of

the turnover of personnel, the high level language is easier to learn

and document. The author's approach will be to interest the Air Force

I in AU78 or a modified version to allow early development of microcom-

puter systems without having programmers undergo extensive training in

18080 assembly language progranmming. The basics of AU78 could be

learned by experienced programmers in a very short period of time. Also,

with the modular approach used in the AU78 compiler, specific capabili-

ties required by the Air Force could be easily added. The Air Force

policy on standard systems is to develop systems for all computers at

I one agency in a high level language and send programs out to other

users in machine language to prevent unauthorized changes. This lan-

guage would provide that opportunity since there are few other micro-

computer languages available. It is understood that the language would

probably be changed or capabilities added for specific type requirements,

I but AU78 would provide an adequate base language for Air Force use. The

use of mizrocomputers in the Air Force is already large, but they are

I used primarily in scientific and process control type operations. The

future use of micros in a more business type orientation is unlimited.

AU78 is a step in that direction and provides a basis for future growth

I and development.

1 9
Development of AU78 Routines

1 The remainder of this thesis wiii discuss the modules required in

i the development of the cross-compiler. As an overview to a compiler,

there are several basic modules required and although they may be

referred to in different terms or broken into fewer or more modules,

the basics of a compiler include a scanner, a parser) semantic routines,

and a code generator. However, the first step in the writing of a compiler

is to define the language in terms of a graar which defines valid

I sentences, operations, operators, and symbols. Table 1 describes the AU78

gramr. These entries are used to create a table which is used by the

compiler to determine proper sentences. The scanner is a routine which

scans the input character string and builds the output symbols of the

programs, including integers, identifiers, reserved words, delimiters and

I operators. These are then passed to the parser which checks the symbols

against the language definitions to determine if the sentences are

properly constructed. If not, an error will be indicated. With the

receipt of a valid input, a final pass is made to incorporate the

symbol table into the code and the output code is written. Each of

j these routines will be discussed in detail to show how the cross-compiler

was written. The entire compiler was written in a modular manner such

I that each routine for each type sentence is generally a separate

set of code in the program. This allows for easy manipulation and

addition of features in the language if future requirements dictate a

I particular type application not presently available. A complete user's

manual and cross-compiler program source listing are provided in

appendices A and B respectively.

1 10

Table 1. ATJ78 graimmar.I ~AMA~ =<IN!> (<RAMMA> /E)/ STOP

I 4INI>.:: 4TATEINENM (; IN1E, /E)

4TATEMENt-, <1OD STAT I / cMP STAT>

4ABEL STAT>

-t$OD STAT > IF 40ONDITIO> THEN -qMP STATE> (ELSE <MP STAT)

I tONDITIOII>

I <'CaP STAT' READ '1?ARI> /WRITE <1*AR]>/
WRITE 4 TRIN~> /GOTO -c4AF>/
COSUB ~1> /MOVE <11ARR TO <JAR>/

RE-TURN/COMPUTE <::XP> =<M

LABEL STATI> ::- <JAR> :2-$TATE> / < TRIN(>

I 4AI> ::-< "TTrEIr>(<ETTEF> / <N >/E

<*M> ::- -JERI> (< ~>-, /E)

I ~E~i'::= ACTO> (<40"'XI> /E

-JACTOI' ::(XI>)/ <JN <VAR> / $TRIN>

<&0t : :a/

I c*I4Op> :

14ETTE> ::=A/B/..12

I 'N> ::- -010I> (<N> E

S40TRINa :: "Any Character"

I7

I II. THE SCANNER

Perhaps the most important part of the cross-compiler is the

I scanner routine. It is in this phase that the input program is

scanned sequentially and the basic elements or tokens of the program

are identified. These include terminal symbols such as literals,

variables, operators, and key words. Typically the source string of

the program is converted into another string of symbols containing

attributes of each basic element. These symbols are generally of

a fixed size and consist of the elements syntactic clasb and a

I pointer to the table entry of the associated basic element. These

symbols are used in later processing by other phases of the cross-

compiler. Because the symbols are of fixed size, converting to them

makes the later phases of the compiler operation easier to design. 1

Included in this symbolic internal representation is a number

I which represents an identifier, integer, delimiter, key word, or

operator. That is, all identifiers have the same internal number to

represent them, as do each of the other terminal symbols. However,

the terminal itself is needed by the parser, so it too must be stored

for later use by the parser. The solution is to output two values.

The first is the internal representation and an index to its position

in the table. The second is the actual value itself.

I 12

In AU78, the above approach to the design of a cross-compiler

I was followed. Each key word, operator and delimiter was loaded into a

table with an index to the appropriate entry. Each was given a

symbolic value for the entire class. For example, all delimiters

are classified as a 4, and key words as a 3. The scanner will scan

an input sentence and break apart the sentence into its relative parts.

Each part will then be assigned a value, and an index within the table

and this information will be passed on to the parser. Figure 2 is a

I flowchart depicting the scanner processes and the interface links to the

parser. Table 2 contains a list of key words, delimiters and operators.

A problem that had to be overcome was to be able to differen-

tiate between alphabetic variables and key words. To accomplish this

each character is read and stored until either a space, delimiter or

I numeric value is reached. Variables can contain integers, although

they must begin with letters. If an integer is encountered in the

scan, then the input is treated as a variable since key words are

all alphabetic. If no integers are found, the input value is compared

with the entries in the key word table. If a match is found, the

indexed position in the table is saved and the value for a key word

is saved along with the actual value of the key word and passed on to

I the parser. The same 'process is true of variables except that an

index f or the variable is not required since it is a unique symbol.

In the case of delimiters and operators, a similar process is

followed where a table search takes place to insure the value is a

valid, acceptable delimiter or operator for the language. If valid,

Inu
Stin
IneeIoe o

Inee
ClsIn

elimitClass, Index

I~~~ls ofur 2.F.ocar f cnnr

NIn au
IToken For

I

I 14
Table 2. Key word, delimiter and operator list.

Key Word Delimiters/Operators

IF >
THEN <
READ
WRITE
GOTO
GOSUB +
MOVE
RETURN *
ELSE /
STOP
TO <:
COMPUTE
END <>I >

I
Table 3. Example scan of a sentence.

STRT: IF 101 <SUM THEN MOVE 101 to STORE

I Value Class Index in Class

STRT 2 (Variable) 0
4 (Delimiter) 4IF 3 (Key Word) I

101 1 (Tnteger) 0
< 4 (Delimiter) 2
SUM 2 (Variable) 0
THEN 3 (Key Word) 2
MOVE 3 (Key Word) 7
101 1 (Integer) 0
TO 3 (Key Word) 11STORE 2 (Variable) 0

[
I
[

1

again a value for the class is stored and along with the index,

the actual value is passed to the parser. Numeric values are checked

to insure they contain only integers. A class value is then assigned

for the integers, but an index is not required since a table of integers

is not needed. Finally, the scanner will recognize a string value.

The scanner will accept anything that is set apart by single quotes

I and assign a class value for a string.

Table 3 portrays an example sentence and the symbolic values

that would be assigned and passed to the parser. As previously stated,

these class values represent the type element and the index within the

table of key wards, delimiters and operators. As shown, variables

I and integers do not require indexes since they are unique.

One additional major function of the scanner is to detect

I initial errors in the inpt-t program. The edits at this point are

primarily concerned with the various elements of a sentence and

generally check to insure that input elements are acceptable and in

correct form. Any element that does not fit into any of the various

classes will be rejected as an error. It is impossible to detect at

I this point if an error was made in procedure. For instance, if a

key word and an integer were run together without any separation, the

two would be treated as a variable. As an example, if MOVE 10 to

ADDR were written MOVEl0 to ADDR, the MOVE10 would be treated as a

variable and not as a key word and integer. It remains f or the parser

to detect errors of this nature.

I III. THE PARSER

I Once the input program has been broken down into symbols or

tokens, the cross-compiler must recognize the phrases (syntactic

construction) and interpret the meaning of the constructions. Each

phrase is a semantic entity and is a string of tokens that has an

I associated meaning.

The first of these two steps is concerned solely with recognizing

and thus separating the basic syntactical constructs in the source

program. It also notes syntactic errors. Once the syntax of a

statement has been ascertained, the second step is to interpret the

meaning (semantics). 14 This is accomplished through the use of rules

or reductions to build a derivation of the sentence. This is often

performed through what is called a syntax tree. Figure 3 portrays the

syntax tree derivation of a sample sentence in the AU78 language. The

approach used here and in AU78 is called a top-down approach. A top-

f down parser builds the tree starting from the root and works downward

to the terminal elements or nodes. In the example of Figure 3,

I GRAMMER is the root and a terminal node would be STRT. If the entire

sentence can be parsed from the root and all nodes reached, then it

I is a valid sentence.

16

17

STRT: IF 101 < SU,' TKEN L:OV 101 TO STORE

GrammarI
StatementI
Label Statement

Variable Statement

STRT U.odifier
Statement

IF Condi tion Then Statement

- - IIExpression o Exr i n ImerativeatStatement

Terr< Tirm E;1 ove .7~ressi on TO

II I

IF oniton Theno STemen

Integer Variable Factor Factor

101 Sum Integer Variable

II101 Store

FI'
I
I Figure 3. Syntax tree for sample sentence.

I
I

I 18

The process for parsing a sentence is through a father-son

own-disown procedure. Each branch point is called a father and

each branch is called a son. The father will adopt the first son

(the first branch will be attempted) to see if he is the correct

one. If not he will disown him and adopt the next one to see if he

1 is valid. This procedure is continued through several levels if

necessary until the last son is either adopted or rejected.

There are several other approaches for a parser design. One

1 of the less frequently used is known as the bottom up technique.

With this approach, the parse begins with the string itself and

Iattempts to reduce it to the distinguished symbol. Using the example

of Figure 3, the tree would be turned upside down to accomplish the

parse. As stated, this is used less often than a top down because

although structured after similar concepts in reverse, the bottom up

is more difficult to define in a program table and it is more difficult

to keep track of the parser's position in a table if one branch is

tried and fails and another branch must be attempted.

Another method, also less frequently used is a precedence parse.

i This method is extremely difficult to use since the language must be

defined such that each element of a statement must fall in a set order

of precedence in relation to all other elements. The difficulty of

programming al~most precludes the use of this in complex

I languages.

The parser for AU78 as previously stated is a top-down parser.

As tokens are passed from the scanner, the parser begins at the top

j level of the grammer and begins a search down a path to see if the

1 19
terminal symbol can be identified. If it cannot, the parser backs

1 up to the previous division point (branch path) and attempts another

path. This will continue until the terminal is identified or if

I one is not identified, then an error is indicated. Although this

sounds like it would be a long, time consuming process, generally

if the terminal is in error, this can be determined very rapidly

with properly constructed grammer tables.

In AU78, this search process was accomplished against a grammer

* table loaded into core which contained all the possible paths a

sentence could follow, As each path was searched, the point of

* departure was stored in a stack type approach, although the actual

stack was not used because it was required for other procedures. If

a path failed, the last entry on the stack would be recalled and the

search would continue from that point down an alternative path until

all paths were exhausted. It is interesting to note that in some

complex sentences, over twenty-five stack positions had to be stored

1 at one time to complete the sentence.

The parser also handles errors associated with the syntax of

f a sentence. It is here that an error such as the one described in

Chapter II would be recognized. The way this works is that the

I parser expects certain elements to follow each other. For example,

in a MOVE-TO statement, the parser expects a variable. or integer to

follow the MOVE which in turn is followed by the TO which must be

followed by a variable name. If this exact sequence is not followed

an error condition will result, In another example, the WRITE verb

j 20

allows either a variable or string to follow. It checks for a

I variable first and if one is not found, it will check for a string.

If neither is found then there is an error in the WRITE statement.

I The method used for checking the constructs of a sentence are the

tokens passed from the scanner with the class value, indexes and

actual values. If the sentence is being built correctly the

semantic routines are called for code generation. Figure 4 portrays a

flow of parser procedures.

I Symbol and String Tables

The AU78 semantic routines involve a two pass approach. This

method was necessary because AU78 allows variables to be defined

anywhere in a program and the first pass is used to build a symbol

table and the second pass to append the symbol table values onto the

I generated object codes. In building a symbol table, each time a

variable is encountered, the table is searched and compared to the

variable value. If a match is found, the table remains unchanged.

Upon completion of the first pass, the table elements are incorporated

into the code already generated from source statements. This is

I accomplished by generating WORD statements which reserve areas for

1 the variables in the object code.

Strings are also handled in a similar manner. Because a

j programmaer could desire to write the same string in various places

in a program, there is an optimizing feature which will store values

in a table and each time a string is referenced it will compare

it to determine if two are exactly equal. If they are, the string

Iu

12

From Call
Scanner

I Accept ?rokens

From

Search 7 alid

FoIen e c

VaiIro
IY
IY

Deemn
Typ

Setec

1 Figure 4~. Flowchart Of' Parser.

22

1will be stored only once. At the beginning of the second pass, the

Istring values and their lengths will be incorporated into the object
code through the use of internally generated address labels which

1point to each string.
I
I
I

i

I
!
!
I
I

I
I
!I

Ii
VP.!!

I IV. SEMANTIC ROUTINES/CODE GENERATION

The semantic routines and code generation procedures are the

I parts of the cross-compiler which put the input source statements into

internal formats and then generate abject code. The semantic routines

are responsible f or creating symbol tables containing variable and/or

labels and f or putting the source statements passed on by the parser

into the internal format such as Polish notation or quadruples. The

code generation procedures accomplish exactly what the title implies,

code generation. This is the most detailed and complicated part of

I the cross-compiler. However, it is also probably the best understood.

3 These procedures take the created internal form and produce code for

the sentences. 15In the AU78 compiler, the two procedures have not

been separated because they are imbedded within each other. For

many straight-forward sentences such as READ or WRITE, the information

I passed from the parser is not changed. However f or COMPUTE and IF-

THEN-ELSE statements quadruples are created by the semantic routines.

Consequently, in AU78 many statements have code generated without

j really being changed by the semantic routines; only the symbol table

is created or updated. By interleaving the two routines wherever

possible, AU78 was designed to provide a more efficient code generation

I process.

ii 23

I 24
AU78 created code for each routine by using a subroutine

approach f or each type sentence. The remainder of this chapter

will describe the process and considerations involved in developing code

for each type statement. Figure 4 depicts the flow of the semantic

routines/code generation procedures as they are called from the parser.

Semantics

WRTIY Cl
Stt?1RT

1N

Figure 5.Semantic routine.

I 25

IB
GOO yCl
SttIT

IN

1OU yCl
SttIOU

IN

REIq yCl
SttRTR

IN

MOETIy Cl
tae OE

IT
I Fi~~u!'e ~~. Sem~Nti o ie (otne)

COPTIy Cl
SttCOPT

V.- -- ---- N

I
I 26

I
I
I

F Call

ELSE ELSE

I
ERROR .

I

I
I

I
I
I

I i 5. Se a ti ou i (C n in e)

27

I WRITE Statement

The WRITE statement code generation involves several considera-

tions when producing the code. The WRITE can involve both the

printing of variable values and the printing of strings. The printing

of the string is relatively straightforward in that the output area

I is loaded with the length of the string and code is generated to

print the string a character at a time, while the counter is decremented

until the entire string is printed. In both cases, the code to check

the status of the output device and to proceed when it is available is

generated for the WRITE statement. Additionally, code to convert data

to Binary Coded Decimal (BCD) is accomplished. A further capability

of the WRITE statement is that the code is generated only once. All

I subsequent WRITE's call the subroutine from the first WRITE. The

I output variable is passed to the subroutine for printing as is a

string and its length. By following this approach, much code is

1 saved and a more optimal program is developed. This is accomplished

by the setting of switches in the compiler to indicate if previous

I WRITE's have occurred. Figure 6 portrays a flowchart of the WRITE code

generation which is called from the parser.

READ Statement

The READ statement allows the programmer to read an input value.

When the READ variable is used, the variable area will receive the

result of the input read procedure. The data is read into a buffer

area and transferred to the variable area. As in the WRITE statement,

I code is generated which checks the status of the input device and

1 28

WRT

IsGnrt

I Move Van-oGeere

abl ToCoe To

r1
ouptPin

Gern6.erte taemnt

Co ef rR t r
Vaial

V.Print

I
I29

proceeds when the device is ready. All conversions from input BCD

to internally usable hexidecimal are accomplished in the generated

code. Also, code is generated for a READ only once. If additional

I READ's are used a subroutine call will use the code generated for the

first READ and all variables will be passed to it. Figure 7 portrays

a flowchart of the READ functions.

IGOTO/GOSUB Statement

The GOTO and GOSUB statement is one of the easier statements

for which to generate code. The GOTO and GOSUB must be followed by

a valid label address. To generate code for the statement requires

I only an unconditional branch (JMP) in the case of a GOTO or sub-

routine call (CALL) in the case of a GOSUB to a labeled address.

Even in assembly language, this requires only one instruction.

Figures 8 and 9 show the flow of GOTO and GOSUB respectively.

RETURN Statement

For a subroutine to work effectively, a RETURN must be coded.

If the RETURN is not included, when there is a call to a subroutine

the processing will not return to the statement following the call

I statement, but will continue with the statement following the end of

the subroutine. This could cause unpredictable results for the program

Iexecution. A RETURN statement can be labeled so that a direct exit
from a subroutine is possible. Code generation for a RETURN also

I requires only one statement. Figure 10 depicts the flow for code

generation for a RETURN statement.

I
I

I __ ___ __ _ ____

I 30

Rern c

FIue.Rea tsaent

I

I

Generate
iMP
Sittement

Generate
Branch

?! Address

c eturn

I
I
I

I
1

1

"I

32

I
1

GOSUB

Generate
CALL
Statement

SGenerate
Subroutine
Address

Iet urn

1

Figure 9. .GOSUJB statement.

I
I

I

33

11
I Generate

RET
Statement

Return

ID

IF'igure 10. Return statement.

1 34
MOVE-TO Statement

The MOVE-TO statement allows for the internal transfer of

data or the initialization of a variable, The data following the MOVE

I can either be a constant or variable but the receiving statement must

be a variable. To generate code for either condition, the object code

must be set up to handle either variable values or constants. To

accomplish this the cross-compiler will determine if the value is a

variable or constant and will generate specific code for each which

will load the D and E registers with the constant value or variable

value. This data is held until the TO condition is processed. The

I variable address following the TO is loaded into the H and L registers

and a move statement is used to transfer the data to the address

loaded in the register. Again the data in the sending field is not

f changed. Figure 11 is a flow description of the MOVE-TO statement.

COMPUTE Statement

The COMPUTE statement is the most difficult statement for which

to generate code in the compiler. The COMPUTE allows for the computa-

I tion of various equations involving both constants and variables and

I includes parenthesis to allow for greater depth. This presents a

significant problem in being able to handle all the various combinations

of conditions. Each addition, subtraction, multiplication, and division

routine has to be uniquely written. However, for all the routines, a

I common procedure was established to load the registers with the two

1 elements being computed at that time. In all routines, the same

registers are used, making it possible for this to be done in a single

subroutine. Figure 12 depicts the COMPUTE flow.

3.5

SMOVE-TO

Load Data/
Address In
Register

Load Recv.
Address In
Address
Reg(H,L)

Generate

MOV
Statements

Re turn

M
I Figure. ll. Move-To statement.

I
I
I

I 36

I COMPUTE

Get ValueI Load Into
Table

NI Operator

NIal
Irtr

+O-IlD
GeINx
VauILa
Tal

I al

N Fiur Y Acompuse Paee-

fIqa unDf 1 uti
ioIausin Vral

I3
The addition procedure was straightforward. Once the registers

are loaded, a double add (DAD) is generated to accomplish the 16-bit

addition with the results remaining in the D and E registers. For

subtraction, the process is not quite as simple, since there is no

- double subtraction verb available in the assembly language. There-

- fore to accomplish 16-bit subtraction, the complement of the subtrahend

must be taken and then a double add is preformed.

The multiplication procedure is more complex in design than

either the addition or subtraction. To accomplish the Multiplication,

a procedure using a 16-bit right shift of the result and a right shift

of the multiplier is performed. Each time the low order bit of the

- multplier is equal to one, the multiplier is added to the shifted

high order byte of the result field. The procedure uses the B and C

registers to hold the result, the C register initially holds the

multiplier, the D register holds the multiplicand and the E register

serves as a counter. This entire procedure is generated once in a

program and if used again will be called as a subroutine and the

I registers loaded with the necessary values. Figure 13 depicts the

j flowchart for the multiplication procedure.

The division routine is less complex than the multiplication.

It simply involves a series of subtractions which are accomplished

by complementing the divisor and performing a double add (DAD) with

the dividend. This procedure is followed until the dividend is zero

or a remainder is found. The D and E registers hold the divisor, the

I H and L registers contain the dividend and the B and C registers

j contain the result. Again like the multiplication, the division

1 38

(!lDi

Retuor N Cd oRtr

I ~~~~Mu/ivue1.Mlil/ivso uruie

Plac
ReutiA - - - _

39

I procedure is written only once and subsequent uses are performed

I as a subroutine. Figure 13 is a flowchart of the division procedure.

To handle equations involving some or all of the possible

operations, the compiler was designed to use a modified quadruple

approach. In using quadruples, an equation is usually broken down

I into the two elements to be operated on, the operator and a result

16
field in the general form value-value-result-operator. The AU78
cross-compiler modified this approach somewhat and a table is used.

Each element of the equation is loaded into the table as it is read.

When an operator is read, it is checked to determine if it is a

j multiplication or division operator. If it is, a switch is set and

after the next value is read, the operation is performed by calling

I either the multiplication or division subroutine. Upon completion of

the operation, the results are stored in a unique result variable

generated by the compiler. This result replaces the two values and

the operator in the table and further reading of the equation proceeds.

This will continue for all multplication and division problems while

I all additions or subtraction operations remain in the table. Figure

12 depicts the flow of the total operation.

While processing an equation, if a left parenthesis is

j encountered, the compiler will begin working with a new table

following the same rules as for the first. In this table, all elements

I read after the parenthesis will be stored, and the multiplications and

divisions performed until a right parenthesis is encountered; indicating

I the end of that computation. The additions and subtractions in the

1 40

second table will then be computed and the result f or the entire

operation enclosed in parenthesis will be stored in another unique

compiler generated field. This result will be placed in the

original table as a multiplication to be performed with the last

entry in the table. Figure 14 depicts the flow of the parenthesis

I procedure. At the end of the equation, the cross-compiler will

search the table, performing all additions and subtractions until

the table is clear. The final result of the computation is placed

in a specific cross-compiler generated result field which is then

moved to the variable address indicated by the COMPUTE statement.

j The same tables are used for each computation, so only limited space

is required to store the tables. The result is a fast, effective

I method for accomplishing computations.

I END Statement

The END statement simply signifies to the compiler that this

I is the logical end of the program and the compiler will then generate

an END verb. Figure 15 depicts the END condition.

I IF-THEN-ELSE Statement

The IF-THEN-ELSE statement is another statement for which it

is especially difficult and complex to generate code. In AU78, the

f conditional comparison allows either equations, variables, and/or

constants to be compared. Consequently, the problem is quite complex

(in determining which type condition is being compared to which other

condition. If equations are compared to each other or even to a

I variable or constant, the equation must first be computed and the

I 41

I Place
ParenthesisI In Table

I Get
N ext
Value

IOrerato 'Mul1/D iv Quadruple RETURN

Io
tI

al
tr

Io
I
Io copi elc
Iu/if'ih*I
Iae fSbabe4,lbl

1 Figure 1)4. Parent~hesis subroutin e.

I END

Generate
END For

Assembler

I Return

IL

1 Ftg-ure 15. End statement.

43

I result saved and then compared to the second value. When equations

are being compared, the code for the equation will first be generated

just as stated for the COMPUTE statement. If previous arithmetic

subroutines have been generated which can satisfy the conditional

equation, then only a subroutine call will be used and the entire

code will not be recreated. The results of an equation will be stored

long enough for the comparison to be accomplished after which the

I results are unavailable to the programmer. If it is necessary to

have the results, then a COMPUTE statement should be performed and

the results of it used in the comparison.

The method used for code generation for the condition is

straightforward. The first value to be compared is stored in a

I compiler generated data field. The next value is then loaded into the

D and E registers and based on the type comparison, code is generated

which will compare the stored value to the register pair. Since this

comparison is accomplished using the 8-bit accumulator, it must take

place a single register at a time. The comparisons are made using

the compare (CMP) verb and one of the jump verbs.

Since the next statement to be processed is based on the

1 result of the comparison, these statements must be labeled so the

1 program can jump to the correct one. To accomplish this, the cross-

compiler generates address labels whifch are appended to the sentence

I following the THEN and the ELSE, or the next logical statement if the

ELSE is not used. By using these labels, the comparison and resultant

j branch will cause a jump to the proper sentence. For each time an

I
I 44

IF-THEN-ELSE sentence is used, unique labels must be generated.

This is accomplished by using a counter and appending the count to

the end of a three character label, thereby insuring a unique label

Ieach time such as THN1, THN2, ELSI, and ELS2, Figure 16 shows the

flow of the IF-THEN-ELSE statement.

As outlined above, the code generation process involves many

intricacies not readily apparent until the detail design is underway.

Also, the peculiarities of the language dictate to a great degree

j the procedures required to efficiently create code. However, the

most important consideration is to generate efficient code and

I wherever possible duplicate code if it can be used by more than one

1 statement. Code for high level languages can never be as efficient

as that created directly in assembly language. But if care is taken

I and the design of the compiler well thought out, the differences in

efficiency can become insignificant.

I
I
1
I
I
I
I
I

45

I IF-TIHE N-

Generate
CODE for
Condition
Comparison

Create
Labels for
Unique
Branch

-Generate
Code To
Branch To
THEN

Generate
Code To
Branch To
Else

Ret ur n

Fig re . I-THZ'-ELSE statement.

I V. SAMPLE AU78 PROGRAM AND LISTING

To demonstrate the capabilities of AU78 and the operation of

the program on line, a sample program was developed and entered through

a teletype keyboard to the 18080. The program accepts two input numbers

I and compares them to determine if the first is greater than or equal

to the second. If the condition is met then the larger number is

printed. If the condition is not met, then an equation is evaluated

and the result printed. The main purpose of this program was to

utilize each type statement in the AU78 language and to demonstrate the

I corresponding object code. Consequently, the flow of the program

will produce at least one or two of each type statement. The source

I listing is found in Table 4. The input and output of the program on

the teletype is found in Table 5. The object code generated by

the cross-compiler is listed in Table 6. The symbol table is produced

first followed by the actual operational code. The code generated for

each source statement can be determined by tracing through the object

I code.

I 46

I
47

Table 4. Program sourde listing.

0100 GOSUB INP;

0110 MOVE INPUT TO NBR1;

0120 GOSUB INP;

0130 MOVE INPUT TO NBR2;

0140 IF NBRI> = NBR2 THEN GOTO GTR ELSE GOTO COM;

0150 GTR: MOVE NBRI TO OUTPUT;

0160 GOTO OTP;

0170 COM: COMPUTE NBR1/2+10(NBR2*5-20)=OUTPUT;

0180 OTP: WRITE 'RESULT IS EQUAL TO "

0190 WRITE OUTPUT;

0200 END;

0210 INP: READ INPUT;

0220 RETURN STOP

i
I

'I

I

II

148
I Table 5o Program operation.

1 080 V3,1 a
,G3770 ;Inttaltzation procedure as defined in

Users Manual

8080 V3.0

-G131 ;Start address of procedure

00080000A ;Input

RESULT IS EQUAL TO 19 ;Output

8080 V3,0 ;Ready

| I

I

I

I L49

i Table 6. Program generated, object code.

I.
>>>>>>>>>>SYMBOL TABLE<<<<<<<<<<

RESL9 9103
RESL8 9195
RESL7 9107
RESL6 0109
RESLS 9108
RESL4 :1:D
RESL3 1SF
PESL2 0111
RESLI 0113
STG1 9115
OUTPUT 0128
NBR2 012h
IBRI 012C
INPUT 012E
SAV 0130
TTYST 006 1
TTYIO 0600
INP 02EB
TEN1 018D

ELSI 0193
GTR 0197
NXT2 5196
COM :1A8OTP 926C

DIV 9lB7
NUL5 01CF
DIVDE 01C3
FNDIV 91CD

. 4-MULT 01E5
NUL4 01FC

MULTO 01EA
DONE 01FB
MULTI 61F6

I"-"- SUBT 0212
NUL3 0232
CARRY 021D
SECND 034B
DADD 9226
PRINT 0277
NUL6 9290
TTYOUT 0283
ENDPT 028F
TTYO 029B
NULl 02E7
LTR1 9283
TTO 92B5
TT02 0238
LTR2 62DE
OT 02EO
CHK 02CC

OTRT 02E6
TTYIN 02F1
NUL2 9366
TTYSO 9309

I
!.

I

50.

Table 6. Program generated object code (continued).

NUMIN 031A
LTRIN 031C
SEC 633A
ASCII 832B
INXH 835B

\END OF PASS ONE

ORG 0100
0100 Be BYTE 00
6161 00 BYTE* 00
0102 00 BYTE 08
8103 00 00 RESL9: WORD 00
8105 00 00 RESL8: WORD 00
0107 00 00 RESL7: WORD 08
0109 00 00 RESL6: WORD 00
BIB 00 00 RESLS: WORD 00
01ID 00 00 RESL4: WORD 00
010F 09 00 RESL3: WORD 00
011i 00 00 RESL2: WORD 08
0113 00 00 RESL1: WORD 00
0115 52 STG1: TXT 'RESULT IS EQUAL TO
0116 45 53 55 4C 54 20 49 53 20 45 51 55 41 4C 20 54
0126 4F 20
0128 00 00 OUTPUT: WORD 00
012A 00 00 NBR2: WORD 00
012C 00 00 NBRX: WORD 00
012E 00 00 INPUT: WORD 00
0130 00 SAV: BYTE 00

TTYST: EQU 01
TTYIO: EQOU 0

0131 CD ES 02 CALL INP
8134 21 2E 01 LX1 B,INPUT
0137 5E NOV E,M
0138 23 INX B
8139 56 NOV D,M
013A 21 2C 0i LXI B,NBR1
813D 71 NOV A,E
013E 77 NOV M,A
013F 23 INX H
,140 7A NOV A,D
0141 77 NOV M,A
8142 CD EB 02 CALL INP
8145 21 2E 01 LXI H,INPUT
8148 5E NOV E,M
0149 23 INX a
614A 56 NOV D,M
6143 21 2A 01 LXI H,NBR2
S14E 71 NOV A,E
814F 77 NOV M,A0156 23 INX H6151 7A NOV AD

I
I

I

Taale P, Program generated object code (continued).

0152 77 MOV M,A
0153 21 2C 01 LXI H,NBR1
0156 5E MOV E,M
0157 23 INX H
0158 56 MOV DIM
5159 21 13 01 LXI H,RESL1
015C 73 MOV M,E
015D 23 INX H
015E 72 MOV M,D
015F 21 13 01 LXI HRESLI
0162 7E MOV A,M
0163 5F MOV E,A
5164 23 INX H
5165 7E MOV AM
5166 57 MOV D,A
1167 D5 PUSH D
5168 21 2A 01 LXI H,NBR2
016B 5E MOV E,M
016C 23 INX R
516D 56 MOV DM
016E 21 13 01 LXI H,RESLI
5171 73 MOV M,E
5172 23 INX H
5173 72 MOV M,D
5174 D1 POP D
0175 21 13 51 LXI H,RESL1
5178 23 INX H
5179 7E MOV AM
017A BA CMP D
017B DA 8D 01 JC THNI
"17E C2 93 01 JNZ ELSI
5181 2B DCX H
5182 7E MOV AM
5183 BB CMP E
6184 CA 8D 01 JZ TBNI
0187 DA 8D 51 JC THNI
018A C3 93 61 JMP ELSi
ISD C3 97 01 THNI: JMP GTR

0190 C3 96 01 JMP NXT2
9193 C3 AS 01 ELSI: JKP COM
9196 7F NXT2: MOV A,A
0197 21 2C 51 GTR: LXI H,NBR1
019A 5E MOV E,M
119B 23 INX H
919C 56 MOV DM
519D 21 28 01 LXI H,OUTPUT01AS 7B MOV A,EOlAl 77 MOV M,A

1IA2 23 INX H
:lA3 7A MOV AD
OlA4 77 MOV M,A
01AS C3 6C 02 JMP OTP
h1A8 11 52 06 COM: LXI D,2

lAB 21 2C 01 LXI H,NBR1SlAZ 4E MOV CM
01AF 23 INX H
51B 46 MOV B,M

j

I
__ _ _ _ __ _ _ _ __ __,_ __ _ _ _ __ _ _ _

I

52

Table 6. Program generated object code (3ontinued).

01B1 CD B7 81 CALL DIV91B4 C3 CF 01 JMP NUL5
%1B7 7A DIV% MOV AD
1B88 2F CMA

01B9 57 NOV DA
01BA 73 NOV A,E
813 2F CMA
IBC 5P NOV E,A
01BD 13 INX D
81BE 69 NOV L,C1BF 68 NOV HIS
1CO 61 80 00 LXI B,O81C3 19 DIVDE: DAD D

01C4 7C NOV A,S
91C5 17 PAL
lC6 DA CD 81 JC FNDIV
81C9 83 INX B
ICA C3 C3 81 JMP DIVDE
01CD AF FNDIV: XRA AliCE C9 RET
liCF 7F NUL5: NOV A,A
81D8 21 13 01 LXI H,RESL1
01D3 71 NOV M,C
8ID4 23 INX H
0D5 78 NOV N,B

01D6 11 05 0 LXI D,5
81D9 21 2A 81 LXI 5,NBR2
0IDC 4E NOV CM
0IDD 23 INX H
01DE 46 MOV HM
.iDF CD E5 01 CALL MULT
01E2 C3 FC 81 JMP NUL4
6IES 06 00 MULT: MVI B,001E7 53 MOV D,E
61BEd 1E 99 MVI E,9

Wood"1EA 79 MULTO% NOV A,C
81EB iF RAR
61EC 4F NOV C,A
81ED 1D DCR E
1EE CA FB 81 JZ DONE
01FI 78 NOV A,S
01F2 02 F6 01 JNC MULTI
91F5 82 ADD D
01F6 1F MULT1: RAR
81F7 47 NOV B,A
1FS C3 EA 81 JMP MULTO
I1FE C9 DONE: RET
I1FC 7F NUL4: NOV A,A
1FD 21 11 81 LXI H,RESL2

8208 71 NOV M,C
8201 23 INX a
0202 78 NOV M,B
8203 11 14 0 LXI D,20
0206 21 ii 81 LXI H,RESL2
0209 4E NOV C,M020A 23 INX H
0208 46 NOV B,MI

I __ _

I!
| 53

Table 6. Program generated object code (comtinued).

I20C CD 12 02 CALL SUsBT
120F C3 32 02 JMP NUL3
0212 7B SUBT: NOV A,E
0213 2F CMA
0214 C6 01 ADI 1
0216 5F NOV E,A
0217 DA ID 02 JC CARRY
021A C3 4B 03 JMP SECND
021D 7A CARRY: NOV A,D
021£ 2F CMA
021F C6 01 ADI 1
0221 57 NOV D,A
1222 C3 28 02 JMP DADD
0225 7A SECND: NOV A,D10226 2F CMA
0227 57 NOV D,A
0228 EB DADD: XCHG
0229 09 DAD B
922A ES XCHG
0223 21 0F 01 LXI H,RESL3
022E 73 NOV M,E
022F 23 INX H
0230 72 NOV MD
0231 C9 RET
6232 7?F NUL3: NOV A.A
0233 21 9F 01 LXI HoRESL3
0236 SE NOV E,M
0237 23 INX H
0238 56 MOV DM
0239 01 OA 00 LXI B,10
023C CD E5 01 CALL MULT
023F 21 OF 01 LXI H,RESL3
0242 71 NOV M,C
0243 23 INX H
0244 70 MOV N,B
0245 21 IF 01 LXI H,RESL3
9248 5E NOV E,M
9249 23 INX H
024A 56 NOV DM
924B 21 13 01 LXI H,RESL1
024E 4£ NOV CM
024P 23 INX H
0250 46 MOV BIN
9251 EB XCHG
9252 09 DAD B
9253 EB XCEG
9254 21 BD 01 LXI HRESL4
8257 73 NOV ME
9258 23 INX H
0259 72 NOV MD
025A 21 13 01 LXI H,RESLI025D 73 MOV ME
925E 23 INX N
025F 72 NOV M,D
9269 21 13 0i LX! H,RESLI
6263 56 NOV DM
1264 23 INX H

I
f

I - __ _ _ _ _ _ _ __-_ _ _ _ _ _ _ _ _.----- - - -

I

54

Table 6. Program generated object code (continued).

0265 5E MOV E,M0266 21 28 01 LXI H,OUTPUT

I0269 72 mov ,D026A 23 INX H

8268 73 mOV M,E
026C 21 15 01 OTP: LXI B,STG1
026F 06 13 MVI B,19
0271 CD 77 02 CALL PRINT
0274 C3 90 02 JMP NUL6
0277 4E PRINT: NOV C,M
0278 CD 83 02 CALL TTYOUT
027B 23 INX B
027C 05 DCR B
027D C2 77 02 JNZ PRINT
0280 C3 8F 02 JNP ENDPT
0283 08 01 TTYOUT: IN TTYST
0285 E6 04 ANI 04
0287 C2 83 02 JNZ TTYOUT
028A 79 NOV A,C
028B 2F CMA
028C D3 00 OUT 00
028E C9 RET
928F C9 ENDPT: RET
9290 7F NUL6: NOV A,A
0291 21 28 01 LXI H,OUTPUT
0294 23 INX H
0295 CD 93 02 CALL TTYO
0298 C3 £7 02 JMP NULl
0293 DE 01 TTYO: IN TTYST
029D E6 04 ANI 04
029F C2 9B 02 JNZ TTYO
"2A2 7E MOV A,M
02A3 E6 FO ANI 240
02A5 OF RRC
12A6 9F RRC
02A7 OF RRC
02A8 OF RRC
12A9 FE OA CPI OA
02AB F2 B3 92 JP LTR1
92AE C6 30 ADI 039
120 C3 35 02 JmP TTO
0233 CE 37 LTRI: AD! 037
0235 2F TTO: CMA
0236 D3 00 OUT TTYIO
9238 DO 91 TT02: IN TTYST
92BA E6 04 ANI 04
929C C2 38 02 JNZ TT02
025F 7E NOV A,m
12CO E6 OF ANI OF
:2C2 FE OA CPI IA
02C4 P2 DE 92 JP LTR202C7 C6 30 ADI 9
02C9 C3 El 02 JNP OT
2CC 21 30 01 CHK: LXI H,SAV

: 7£ NOV A,m
02LO FE 81 CPI 1
9202 CA E6 02 JZ OTRT

'I

I-
_ _ _ - - w |- I - -

!
I

55

I Table . rogram generated object code (continued).

I 02D5 C6 01 ADI 1
02D7 77 NOV M,A
92D8 21 28 01 LXI H,OUTPUT
92DB C3 9B 02 JMP TTYO
02DE C6 37 LTR2: ADI 937
02E@ 2F OT: CMA
02E1 D3 00 OUT TTYIO
92E3 C3 CC 02 JMP CHK
92E6 C9 OTRT: RET
02E7 7F NULl: NOV A,A
O2E8 C3 00 38 JMP 03800
0 2EB CD F1 02 INP: CALL TTYIN

I 2EE C3- 66 03 JMP NUL2

:2F1 DB 01 TTYIN: IN TTYST
02F3 E6 01 AN 91
02F5 C2 F1 02 JNZ TTYIN
92F8 DB 00 IN TTYIO
I2FA 2F CMA
02FB E6 7F ANI 07F
02FD 32 02 91 STA 0102
9309 DB 01 TTYSO: IN TTYST
0302 E6 04 ANI 04
9304 C2 00 93 JNZ TTYSO
9307 3A 02 91 LDA 0102
030A 2F CMA
0308 D3 00 OUT TTYIO
0D 3A 02 01 LDA 0102
: 310 FE 3A CPI 03A
0312 DA 1A 03 JC MUMIN

0315 D6 37 SUI 037

9317 C3 1C 03 JMP LTRIN
-31A D6 30 NUMIN: SUI 030
031C 32 02 01 LTRIN: STA 0102931F 21 30 01 LXI H,SAV

9322 7E NOV A,M
9323 FE 01 CPI 1
9325 C; 3A 03 3z SEC
0328 C6 01 ADI 1
032A 77 NOV N,A
032B 21 92 91 ASCII: LXI H,0102
932E 01 99 01 LXI B,0109
9331 7E NOV A,N
0332 97 RLC
9333 07 RLC
9334 97 RLC
9335 97 RLC
0334 02 STAX B
0937 C3 F1 02 JMP TTYIN
633A 21 92 81 SEC: LXI 9,012
933D 7E NOV A,m
933E E6 OF ANI 9F
8 9348 21 00 01 LXI H,6180
9343 B6 O k N
0344 0' STAX B
0345 79 NO'' A,E
346 FE 0, Cp

9348 -A 59 03 J7 INXH

I
1
I

I
1

56

I Tatle 6. Program generated object code (continued).

I 6348 1E 01 SECND: MVI E,l634D 21 30 01 LXI H,FAV

6351 77 MOV M,A9352 OA LDAX 8
0353 21 2E 01 LXI HINPUTS0356 23 INX H

i 357 77 MOV M,A
1358 C3 Fl 62 JMP TTYIN
635B 21 2E 81 INXH: LXI H,INPUT035E @A LDAX B
035F 77 MOV M,A0360 21 30 01 LXI H,SAV

0363 AF XRA A
6364 77 MOV M,A
0365 C9 RET
6366 7F NUL2: KOV A,A
0367 C9 RET
6368 C3 00 38 JMP 03880

END

\END OF PASS TWO

I

1
1
I
1
*1
!

III ii

VI. CONCLUSION

The design and development of the AU78 language and compiler

has provided at least one significant advancement. It has opened a

way to more efficient programming of an Intel 8080 based microcomputer

using a simple high level language. Using the assembly language for

the 18080 is tedious at best and the introduction of AU7S provides a

basis for increasirg a programmers capacity to fully utilize the

18080. It is realized AU78 has limitations. It was desLgned as a

general purpose type language and as a result specific capabilities

to accomplish a specific task may not be present. However, the

basis for the inclusion of these capabilities is available through

the modular design of the compiler. Additional capabilities could~ be

added to perform a specific task by adding statements to the grammar

and the grammar table and by creating a new subroutine.

Major achievements, as far as the author is concerned, are the

tremendous experience gained in completing such a task and providing

the capability to program the 18080 in a high level language using

the time share capabilities of the RSTS/E operating sYstem of a DEC

PDPll/40 minicomputer. It is virtually impossible to fully understand

the inner workings of a compiler without writing one. Some compilers

take several persons at least a year or two to write and even then

they are seldom complete or totally accurate. Mlost are continually

being enhanced and modified because of the detailed problems

57

58

g associated with accounting for every possible way a source language

statement can be used. To better understand a portion of the problem

involved in valuable knowledge.

One of the most important lessons learned from this effort is

I that to be most effective, a high level language for a small computer

I should be designed for a specific type application. To design one

for many type uses requires trade-of fs in capabilities which tend to

weaken the overall language. For large machines, this is not as

critical, as evidenced by PL/l. But where core is a significant

I consideration, special purpose languages are best. The A!178 requires

15K core on the PDP1l/40, but had it been designed for a specific

I application, these requirements could have been reduced.

Another important lesson is that in designing a compiler, one

should map out the capabilities it will have at the start and develop

these first. Otherwise in the development, it is very easy to desire

to add more capabilities. This in itself is not bad, but it tends to

I extend the estimated completion dates. In other words, establish the

initial capabilities and enhance later.

Finally, it should be noted that many efforts to develop high

level languages for microcomputers have already been undertaken. The

results of all so far have aio. been totally satisfactory in respect

to broad capabilities. However, man! of these efforts are relatively

recent and progress is being made in the design and efficiency of these

languages. With additional work, the high level language future for

microcomputers seems promising. The author sees AU73 as a small step

in that direction.

I
I

REFFRENCES

'B. A. Perrin, "High Level Languages and the Micro-

processor," Electronic Engineering, May 1977, p. 65.

2Ibid.

3Ibid., p. 66
4Mark Alexander, "An Inside Look Into NIBL-Extended

Tiny BASIC for the SC/ MP," Interface Ape, January 1977,

p. 106.
5Yaohan Chu, Computer Organization and I'Oicroprogramming,

(Englewood Cliffs, New Jersey: Preintice-Hall, Inc., 1972),
p. 173.

Loi. --renzel, "How to Choose a Microprocessor," BYTE,
July 1978, p. 1?8.

7... H. Hamza, ed., IEEE 1976 Mini-Mini and Microcomputers
(IEE Computer Society, 1977), p.43.

IJohn Coach and Terry Hamm, "Semantic Structures for
Efficient Code Generation on a Stack m'achine", Comnuter,
Mfay 1977, p. 140.

9Perrin, "High Level Languages," p. 66.

10'.. M. Kennan, J. J. Horning, and D. B. .'ortman, A
Compiler Generator (Englewood Cliffs, New Jersey: Prentice-
Hall, Inc., 1970), p.43.

11Donald C. Simoneaux, High Level Language Compiling
for User-Definable Architecture (Cameron Station, Alexandria,
Virginia: Defense Documentation Center, 1975), p.24 .

12John J. Donovan, Systems Programming (New York:

.cGraw-Hill Book Company, 1972), p. 266.

1 Zavid Gries, Compiler Construction for Digital Com-
nuters (New York: John '.iley and Sons, Inc., 1971), p. 65.

l 4 onovan, Systems 1--rogram-inr, r. 2:z

I
!

I
i 60

t 5Gries, Compiler Construction, p. 5-6.
16Gries, Compiler Construction, p. 5-6.

I
I
I
I
I
I
i

I
I
I
I

1
I

I

I __ _ __ _ ______IIII IIliI -_I___ -

I APPENDIX A

I USER'S MANUAL

Wm

I AU78 USER 'S MANUAL

1.0 General Procedures - The development of an AU78 langu-

I age program must be accomplished through an on-line

PDP11 remote terminal for compilation by a BASIC pro-

gram with the results being stored in a user's disk

I file.

1.1 Log on Procedures - The user will log onto the PDP11

in the usual manner as determined by the local environ-

ment. Generally an account number and a password are

required entries.

1.2 Run of Compiler - When the READY signal appears on the

terminal the compiler can be initiated. At that point,

enter the command RUN % AU78. When the program is

I loaded, a "?" will appear. The compiler is ready to

accept source code.

2.0 Coding - Source code can be input in a generally free

I form format with only spaces required between entires.

I2.1 Line Numbers - Line numbers are optional in AU78 and

can be used if desired by the programmer. Since they

I are not required, branch conditions cannot be to line

I numbers and must be to labeled statements.

6 2

2.2 Labeled Statements - Any AU78 statement can be labeled.

I A label must begin with an alphabetic character and can

be up to five characters long. The label must be followed
by a colon before the program statement begins.

I2.3 Sentences - A sentence is any valid AU78 statement. A

semicolon should be placed at the end of each sentence

to signify its completion.

I2.4 Lines of Code - Upon completion of a sentence, a TAB

character on the keyboard can be depressed if it is

desired that the next sentence began on a new line.

f This is not necessary since the lines can continue

without interruption.

2.5 Logical End of Program - The logical end of a program

is signified by the insertion of an END statement.

2.6 Subroutines - Subroutines can physically be placed any-

where in a program except as the very first statement.

A call to a subroutine will cause a branch to the su'b-

routine address, perform the function and return to the

I next logical statement after the call. If the sub-

routines are to be grouped at the end of the program,

the END statement must be entered before the sub-

routines are added.

I

2.7 Physical End of Program - When all coding is complete, a

STOP statement followed by a carriage return should be

Ientered to signify to the compiler the last statement
has been entered and compilation is to begin.

3.0 Compilation and Assembly - If an error were detected

1 during compilation, they should be corrected and rerun.

Upon successful completion of a compilation, the assembly

process is ready to run.

3.1 Assembly - To assemble the compiled code, enter RUN %

ASMBLR. Then the following questions and their responses

are used to run the assembler.

MICROCOMPUTER ? 8080

INPUT FILE ? COMP. DAT

OUTPUT FILE ? Enter either the name of a file or

depress the carriage return for a paper tape file.

LISTING ? Enter /Q for the printer or any valid

PDP11 RSTS entry.

3.2 Sign-Off - Upon completion of the assembly process, sign

off the system with a BYE command.

4.0 Procedure for Intellec - 8 - The following actions are

required to initialize the Intellec-8 for operation

-Turn on the Intellec - 8

-Turn teletype to "on line" position.I
I
I__ _ _ _ _ _ _ _ _ _ _ ___ _ ___ _ _ _

I

I 65
-Press "MEMORY ACCESS" (TOP HALF).

I -Press "WAIT".

I -Place zero in the switch register by depressing the

lower half of each of 16 switches in the Switch

I register.

-Press "LOAD"

I -Place "C8" (hexadecimal) in the eight switches in the

right half of the switch register. The switch is in

the one position if the upper half of the switch is

7 pressed in.

-Press "DEP".

-Press "INR".

-Place "00" in the right half of the switch register.

-Press "DEP".

-Press "INCR".

-Place "38" (hexadecimal) in the right half of the

switch register.

-Press "DEP".

-Press "RESET".

-Return the memory access switch to the "RESET" position.

-Return the wait switch to the "RESET" position.

-Message should then be printed on the teletype.

4.1 Procedure to load code - To load a paper tape in the

Intellec - 8 the following steps should be followed.

-Turn on and bring up Intellec-8.

I1!_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I 66
-Type "G3770" followed by a carriage return.

I -Depress "Start" on paper tape reader.

-Program will return to monitor when load is complete.

4.2 Procedure to Execute program - After the tape is loaded,

I type GXXXX followed by a carriage return. The XXXX is

the address of the starting location of the program in
hexidecimal.

I5.0 AU78 Statements - The statements acceptable by the AU78

I compiler can be entered in a free form format. The only
exception is that a space must be placed between key

1 words and other entries.

I5.1 READ variable - The READ statements accepts input data

into the area set up by the variable. Data can be

I either processed in the variable area or moved to another

area for processing. The status of the input device is

automatically checked by the READ statement.

5.2 WRITE variable/string - The WRITE statement will write

to the output device the information stored in the vani-

I able area or will print out the entire string which is

enclosed by single quotes. The string capability allows

the programmer to set up header and format information.

j The status of the output device is automatically checked

by the ',:IRITE statement.

I
1 67

5.3 NOVF variable/integer TO variable - The MOVE-TO state-

I ment allows for the transfer of data internally in the

i program. It can also be used to initialize a variable

or set/reset a variable value. With the MOVE-TO, the

Ivalue of the sending field remains unchanged.

5.4 GOTO Label - The GOTO statement accomplishes a transfer

of control from the current location to the location of

the label address. A GOTO should not be used to branch

out of a subroutine since it could create execution pro-

Iblems later in the program processing.

5.5 GOSUB Label - The GOSUB statement transfers program con-

trol from the current statement to the address identi-

I fied by the label. Upon completion of the subroutine,

control is passed back to the sentence following the

GOSUB. DATA can be passed to subroutines through vari-

I ables. If the variables are changed in a subroutine, the

new values will be available for use in the main program.

5.6 RETURN - The RETURN statement provides a means of return

from a subroutine to the main body of the program. The

first statement after the GOSUB statement will be executed

1immediately after the RETURN statement.

5.7 CC!',IPUTE expression z variable - The CO2PUTE statement

provides a means of computing equations. The use

!
I

I __ ___ ____ ___ i __ __ _

I

I 6

of parenthesis is permitted to provide greater flexi-

I bility and depth in equation development. All equa-

tions are evaluated in proper order with operations

within parenthesis being accomplished first, followed

I by multiplication and division operations. Both

variables and integers may be used in a typical equation.

The results must be equated to a variable for further

processing.I
5.8 IF condition (equation/variable/integer - operation -

I equation/variable/integer) THEN statement ELSE statement -

The IF-THEN-ELSE statement provides the capability to

I perform comparisons between values and then accomplish

certain operations based on the result of the comparison.

5.8.1 IF condition - The IF condition allows several alterna-

I tive bases for comparison. A full mathematical equa-

tion can be compared to another equation, variable or

integer. Additionally, variables or integers can be

l compared with each other or with equations. It should

be noted that if an equation is used as the basis for

I comparison, the results of the equation are not saved

beyond the use of the statement.

5.8.2 THEN statement - The THEN statement will be executed

I if the IF condition is met. Unless the THEN is followed

I
I
I _ _ _ _ _ _ _ _ _

I 69
g by a branch statement, upon completion of the statement,

control will pass to the statement following the IF-

I THEN-ELSE,

5.8.3 ELSE statement - The ELSE statement is optional. If

I used, the statement following the ELSE will be executed

g if the conditional comparison fails. Unless a branch

statement is used, upon completion of the statement

the program control will fall through to the next

sentence. If the ELSE statement is not used, the conditional

statement fails, control will pass to the next sentence.

5.9 END - The END statement identifies the logical end of

I the program.

5.10 STOP - The STOP statement is used to indicate the last

statement in the program.

1 6.0 Key Words - The following iLs a list of key words which

cannot be used except as stated above.

1IF RETURN
THEN COMPUTE
ELSE READ
3OTO WRITE
GOSUJB END

STOP

j 7
7.0 Reserved Words - The following is a list of reserved

I words that cannot be used in coding on AU78 program:

A M SP
B OUT THN (1-20)
C PUSH ELS (1-20)
D POP STG (1-20)
E CALL STOP
H ORG NUL (1-9)
I EQU DIVDE
STAY SET FNDIO
DADD PSW DIV
SECND CARRY SUBT
PRINT TTYOUT ENDPT
TTO LTR1 TT02
CHK LTR2 OT
MULT iVULTI NUMIN
LTRIN MULTO INXH
TTYIN SEC NO SEC

TTYS 0

8.0 Special Characters - With the exception of the special

characters listed below, other special characters are

not allowed except within strings. The following may

be used with AU78 code.

/
+

~(

e)

1
I
I
I

I
I
I
I APPENDIX B

AU78 PROGRAM LISTING

I

I
1 71

I

I

I
I

72

I

1 DIM G%(419)\MAT READ G%
2 DATA 0,0,0
4 DATA 0,1,0,332
8 DATA 6,20,0,12
12 DATA 6,4,16,16
16 DATA 3,10,0,1
20 DATA 0,2,0,336
24 DATA 6,36,0,28
28 DATA 4,5,1,32
32 DATA 6,20,e,1
36 DATA 0,3,0,40
40 DATA 6,52,44,1
44 DATA 6,124,48,1
48 DATA 6,192,0,1
52 DATA 0,4,0,56
56 DATA 3,1,0,60
60 DATA 6,80,0,64
64 DATA 3,2,0,68
68 DATA 6,124,0,72
72 DATA 3,9,1,76
76 DATA 6,124,0,1
80 DATA 0,5,0,84
84 DATA 6,212,0,88

86 DATA 6,96,0,92
92 DATA 6,212,0,1
96 DATA 0,6,0,100
100 DATA 4,1,104,1
164 DATA 4,2,108,1

108 DATA 4,11,112,1
112 DATA 4,12,116,1
116 DATA 4,13,120,1
120 DATA 4,3,0,1
124 DATA 0,7,0,128
128 DATA 3,3,136,132
132 DATA 6,184,0,1
136 DATA 3,4,148,140
140 DATA 6,184,144,1
144 DATA 6,380,0,1
148 DATA 3,5,156,152
152 DATA 6,208,0,1
156 DATA 3,6,164,160
160 DATA 6,208,0,1
164 DATA 1,7,180,168
168 DATA 6,208,340,172
172 DATA 3,11,0,176
176 DATA 6,208,0,1
180 DATA 3,8,316,1
184 DATA 0,8,0,188
188 DATA 6,208,0,1
192 DATA 0,9,0,196
196 DATA 6,2Z8,0,200
200 DATA 4,4,0,204
204 DATA 6,36,0,1
208 DATA 0,10,0,304
212 DATA 0,11,0,216
216 DATA 6,228,0,220
220 DATA 6,272,1,224

I

I

73I

224 DATA 6,212,0,1
228 DATA 0,12,0,232
232 DATA 6,248,0,236
236 DATA 6,284,344,240
240 DATA 6,212,0,1
244 DATA 0,0,0,0
248 DATA 0,13,0,252
252 DATA 4,14,264,256
256 DATA 6,212,0,260
260 DATA 4,15,0,1
264 DATA 6,296,268,1
268 DATA 6,208,0,1
272 DATA 0,14,0,276
276 DATA 4,6,28,1
280 DATA 4,7,0,1
284 DATA 0',15,0,288
288 DATA 4,8,292,1
292 DATA 4,9,0,1
296 DATA 0,16,0,308
300 DATA 0,17,0,312
304 DATA 2,0,0,1
308 DATA 1,0,0,1
312 DATA 5,0,0,1
316 DATA 3,12,256,320
320 DATA 6,212,0,324
324 DATA 4,3,0,328
328 DATA 6,208,0,1
332 DATA 1,0,8,8
336 DATA 1,0,24,24
340 DATA 6,296,0,172
344 DATA 4,14,1,348
348 DATA 6,212,0,352

352 DATA 4,15,0,1
356 DATA 3,13,0,1
360 DATA 7,6,0,1
364 DATA 7,7,0,172
368 DATA 7,8,0,1
372 DATA 7,9,0,200
376 DATA 7,10,0,88
380 DATA 7,11,0,92
384 DATA 7,12,0,1
388 DATA 7,13,0,68
392 DATA 7,14,0,72
396 DATA 7,15,0,1
400 DATA 7,16,0,1
404 DATA 7,17,2,1
408 DATA 7,18,0,256
412 DATA 7,19,0,1
416 DATA 7,20,0,1
500 DIM K$(13)\MAT READ KS
520 DATA IF, THEN,.EAD,WR TE,GOTOGOSUB,MOVE,RETURN,ELSE,STOP,Tc
530 DIM A$(20)
540 Ai-\MI%-o

\D2%-0

S 2 II

74

545 DIM D$(20)\D%1l\EI%-1\T1% IL

550 OPEN "COMP.DAT= FOR OUTPUT AS FILE 1%
560 OPEN "TEMP.TMP" FOR OUTPUT AS FILE 2%
570 DIM E2S(20)\E2%-1\Sl%-0\Rl%-I
1000 REM SCANNER
1010 DIM T$(17l)\MAT READ T$

• -1020 DATA GRAMMER,LINE,STATEMENT,MODSTATECONDITION,OPERATORIMPSI
GER,STRING
1030 T%1l

1040 DIM S%(30)
1050 H%=4\I%-0
1055 Y%o\W5=" =
1060 INPUT LINE S$
1070 GOSUB 1280\P%=4\GOSUB 1090
1074 ZS- END"\GOSUB 32000\CLOSE 2%
1075 OPEN 'TEMP.TMP' FOR INPUT AS FILE 2%\GOSUB 20000

\CLOSE 1%\CLOSE 2%
1080 STOP
1090 REM
1100 REM G%IS GRAMMER MATRIX
1110 REM T$ IS TRACE NAME VECTOR ,T%- FOR TRACE

1120 R%-0\O%=G%(P%)
1130 IF O%-0 THEN R%-I\IF T%-1 THEN PRINT TAB(X%*3);T$(G%(P%+l))
1140 IF (0%-i OR O%=2 OR O%-51 AND C%-O% THEN R%-IF T%-1 THEN PRIN'

1150 IF (O%-3 OR 0%-4) AND C%-O% AND V%=G%(P%+) THEN R%-I\IF T%1I T1
1155 GOSUB 32500
1160 IF O%>0 AND O%<6 AND R%x1 THEN GOSUB 1280
1170 IF O%-6 THEN X%=X%+l\S%(X%)-P%\P%-G%(P% +)\GOTO 1120
1180 REM SEMANTIC DECODE HERH
1200 P%-G%(P%+2+R%)
1205 IF P%-95 THEN GOSUB 4700
1208 IF P%=72 AND C%-3 AND V%-9 THEN E6%=1
1209 IF P%-28 AND C%-4 AND V%5 AND E6%=1 THEN GOSUB 6200\E6%-0
1210 IF P%-2 THEN X%.0\P%.0
1220 IF NOT (P%-0 OR P%-I) THEN GOTO 1120
1230 R%-P%\P%-S%(X%)\X%-X%-1

* 1240 IF T%-1 AND R%-0 THEN PRINT TAB(X%*3+3);*FAIL'
1250 IF T%-1 AND R%1I THEN PRINT TAB(X%*3+3);*SUCCESS"
1260 IF X%<0 THEN RETURN
1270 GOTO 1200
1280 REM SCANNERI 1290 C%-\V%-0\V$=-"
1300 IF LEN(SS)<>0 THEN 1310 ELSE 1340
1310 GOSUB 1350 \IF C$-" ' GOTO 1300
1320 GOSUB 1390
1330 PRINT "C%-'C%, 'V%-*V%,*V$5"V$
1340 RETURN
1350 SSCVTSS(SS,16%)
1360 CSLEFT(S$,1)
1370 S$RIGHT(SS,2)
1380 RETURN
1390 REM DETERMINE CS

1400 IF INSTR(1%,-0123456789-,C$) THEN 1410 ELSE 1470
1410 V$:VSCS
1420 V%VAL(V$)
1430 IF LENrS$) <>0 THEN 1440 ELSE 1460
1440 GOSUB 1350

1

I_

i II Ii

75

1450 IF INSTR(lt,-0123456789g,CS) THEN 1410
1460 CI=1\SS-C$+SS\RETURN
1470 REM KEY WORDSI1480 IF INSTR(1%,&ABCOEFGHIJKLMNOPORSTUVWXYZ0123456789-,C$) THEN 1490 ELSE
1490 VS-VS+C$\GOSUB 1350
1500 IF INSTR(1%,ABCDEFGHIJKLMNOPORSTUVWXYZ01234S6789.,C) THEN 1490 ELSE
1510 IF LEN(SSK<> 0 THEN 1480 ELSE 1520[1520 FOR V%-1 10 13
1530 IF KSCV%)-VS THEN C1-3 ELSE 1550

\S$-C$+S$
1540 RETURN
1550 NEXT V%
1560 V%=0%\C%-2\S$-C$+S$
1570 RETURN
1580 IF C$<>"<TSEN 1640
1590 V$=V$+CS
1600 GOSUB 1350
2 610 IF CS"-" THEN VS=VS+CS\C%-4\V%-12\RETURN
1620 IF C$->" TEEN VS=VS.C$\C%-4\V%-13\RETURN
1630 C%-4\VI=2\SS-C$+SS\RETURN
1640 IF C$<>> THEN 1690
1650 VS-VS+CS
1660 GOSUB 1350
1670 IF CS-"-" THEN C%-4\V%-11\RTUJRN
1689 SS-CS\CI=4\V%=1\RETURN
1690 IF C$<>" THEN 1750
1780 V$=V$+CS\Z%=1

170GOSUB 15170I-V+SZIZ+
1750 IF INSTR(1%,"><:;+-*/t!!()',CS) THEN 1760 ELSE 1770
1760 V- SR(%>.;-/lOC)\C%-4\V$-V$+CS\RETURN
1770 VS-V$+C$\C%-9\V%-O
1780 RETURNI1790 REM SEMANTIC ROUTINES BEGIN HERE
1890 REM VARIABLE TABLE
1819 IF A%>1 THEN 1821l ELSE A$(A%)NV$\A%-A%+1\GOTO 1869
1820 B;-1
1830 IF A$(B%)-V$ THEN 1860I1840 B%-B%+1
1859 IF Bt>A% THEN AS(A%)-V$\A%-At+1\GOTO 1860
1855 GOTO 1839
1860 RETURN
1900 REM READ VARIABLE ROUTINEI1910 GOSUB 1800
1915 Y%9o
1916 IF Ill-1 THEN GOTO 2300
1917 ZS-W$+' CALL TTYIN*\GOSUB 32600

1929 W$- \$* JMP NUL2"\GOSUB 32900

\ Z$-*T.'fIN: IN TTYST'\GOSUB 32909
\Z$-" ANI 01*\\GOSUB 32000

1949 ZS-WS+* JNZ TTYIN"'\GOSUB 3209
1950 ZS-" IN T'YIO"\GOSUB 32000

\Z's. . CMA'\GOSUB 32000
\Z$-* AN: 07F"\GOSJB 32090

1979 ZS-W$+' STA 0102*\GOSUB 32000

1980 Z$STTYSO: IN TTYST*\GOSJB 32000
1990 Z$=" ANI 04*\GOSUB 32000
2909 Z$=WS+" JNZ TTYSO'\GOSUB 32000
2010 Z$-' LDA 0102"\GOSUB 32000

\ZW C4A"\GOSJE 32000
2020 Z$-WS+" OUT TTYIOI\GOSJE 32000
2925 GOSUB 2400
2930 ZS=W$+" LXI H,SAV"\GOSUB : 2000
2040 Z$-W$+* NOV A,M"\GOSUB 32000
2050 ZS-" CPI 1'\GOSUB 32000
2060 ZS=W$+" JZ SEC"\GOSUB 32000
2070 Z$-" ADI 1'\GOSUB 32000

\Z$-" NOV M,A"\GOSUB 32000
\Z$WASCII: LXI H,0102"\GOSUB 3290

2090 Z$- W$+" LXI B,0100"\GOSUB 32000
2100 Z$-W$'- NOV A,M"\GOSUB 32000
2120 Z$-W$+" RLC"\GOSUB 32000
2130 Z$-WS+" RLCo\GOSIB 32000
2140 Z$-WS+" RLC"\GOSUB 32000
2150 ZS=WS+" RLC"\GOSUB 32000
2170 Z$-W$+"JMTXB"\GOSUB 32000
2160 Z$-W$+" M STAX B"\GOS B 32000

2200Z$-" ANI OF"\GOSUB 32000
2210 ZS=WS+" LXI H,0100"\GOSUB 32000

\ZS-W$+" ORA M"\GOSUB 32000
\ZS=WS+" STAX B"\GOSUB 32000

2234 Z$=WS+" NOV A,E"\GOSU B 32000\Z$-W$+" CPI 1"\GOSUB 32000
2235 ZS=WS+" JI INXH"\GOSUB 32000

\Z$-SECND: MVI E,1"\GOSUB 32000
2240 ZS-WS+" LXI HSAV"\GOSUB 32000
2250 Z$-W$+* XRA A"\GOSUB 32000
2260 Z$-W$+" NOV M,A*\GOSUB 32000
2262 Z$-WS+' LDAX B"\GOSUB 32000

\ZS=W$+" LXI H,"V\GOSUB 32000
\Z$-WS+" INX H"\GOSUB 32000
\ZS-W$+* NOV MA'\GOSUB 32000

2265 Z$*W$+" JMP TrYIN"\GQSUB 32000
2270 Z$-" INXH: LXI ;i,"+VS\GOSUB 32000

\ZS-WS+ LDAX B*\GOSUB 32000
\ZS=W$S. NOV M,A*\GOSUB 32000

2275 ZS-WS+" LXI H,SAV"\GOSUB 32000
\ZS-WS+" XRA A"\GOSUB 32000
\Z$SWS+ NOV M,A"\GOSUB 32000

2280 Ilt-1
\Z$-" RET'\GOSUB 32099
\ZS-NUL2: NOV AA*\GOSUB 320941
\RETURN

2300 Z$-WS+" CALL TTYIN*\GOSUB 32000
\W$-*
\RETURN

2400 ZS-" LDA I102'\GOSUE 32690
',S- CPI 03A*',GOSUB 3200
\ZS-* JC NUMIN"\GCSUB 32009

SUI 037*\GOSUB 32000

77

2410 Z$- JM? LTRIN*\GOSUB 32000
\Z$-"NUMIN: SUI 030"\GOSUB 32000
\Z$SLTRIN: STA 0102"\GOSUB 32000I \RETURN

2500 REM WRITE PARAMETER ROUTINE
2505 GOSUB 1800
2507 IF P1%-i THEN GOTO 2900
2510 ZS=WS+" LXI H,"+V$\GOSUB 32000

\ZS-1 INX H"\GOSJB 32000
\Z$-" CALL TTYO"\GOSUB 32000

\ZW 3MP NUL1"\GOSUB 32000I2520 Z$-* TTYO: IN TTYST"\GOSUB 32000
2530 Z$-W$+" ANI 04"\GOSUB 32000
2540 ZS-WS+" JNZ T'YO"\GOSUB 32000
2550 Z$-WS+" MOV A,M"\GOSUB 32000
2560 Z$-W$+" ANI 240*\GOSUS 32000I2579 Z$=W$+" RRC*\GOSUB 32000
2580 ZS-w$+" RRC*\GOSUB 32000
2590 ZS-WJ$+" RRC"\GOSUB 32000
2600 Z$-W$+" RRC"\GOSUB 32000
2610 ZS-WS+* CPI OA"\GOSUB 32000
2620 lS-WS+" JP LTR1"\GOSUB 32000
2630 Z$-wS+" ADI 030"\GOSUB 32000
2640 Z$-WS+* 3M? TTO'\GOSUB 32000
2650 Z$-*LTR1: ADI 037'\GOSUB 32000I2660 ZS-'TTO: CMA"\GOSUB 32000
2670 Z$-WS+* OUT TTYIO"\GOSUB 32000
2680 Z$-' TT02: IN TTYST"\GOSUS 32000
2590 ZS-W$+* ANI 04"\GOSUB 32000
2700 ZS-WS+' JNZ TT02"\GOSUS 32000
2710 ZS-W$+" NOV A,MI\GOSUB 32000
2720 Zs-WS'* AN! @F*\GOSUB 32000
2730 Z$-W$+ CPI OA*\GOSUB 32000

2740 Z$- 3? LTR2*\GOSUB 32000
2750 ZS-W$+" ADI 030"\GOSUB 32000
2760 ZS=W$+" 3M? O'\GOSUB 32000
2770 Z$" CHR: LXI H,SAV*\GOSUB 32000

\Z$-" MOV A,M-\GOSUB 32000
2790 ZS-W$+" C?! 1"\GOSUS 32000
2810 Z$-W$+" AD! OT\GOSUB 32000
2800 ZS-WS+" 3ZI OTR\GOSUB 32000

282 SZ$WS+l TT0V YOA\GOSUB 32000

2860 Z$-* LTR2: ADI 037'\GOSUB 32000
2870 Z$-" OT: CHA"\GOSUB 32000
2880 ZS-WS+* OUT TTYIO"\GOSUS 32000
2885 P1%-i

\I- 3M? CHK"\GOSUB 32009
\Z$-" OTRT: RET"\GOSUB 32098
\Z$-* NULl: MOV A,A"\GOSUB 32090

2890 RETURN
2980 lS-W$+' LXI i,%VS\GOSUB 32000

\RETUR CALL TTYO'\GOSUB 32000

\RTR

1 78

3000 REM STRING ROUTINE
3810 IF D%>1 THEN 3020I.>3012 Di$-NUMiS (0%)
3014 05 (D%)-"STG"+01$\D%-D%+1
3016 D$(0%)-V$\D%-0%+1\GOTO 3070

3020 BI-2
3030 IF D$(B%)-V$ TRES 3080F-3040 B%-B%+1
3050 IF B%>0% THEN 3052 ELSE 3060
3052 OlS-NUMiS (D%)\0S (D%)="STG"+D1$\D%-0%+1
3054 DS(D%)-V$\D%-D%+l\B%-0%-1\GOTO 3080
3060 GOTO 3030
3070 B%-2
3080 3%-BEl
3090 ZS-W$+" LXI H,%+DS(B%)\GOSUB 32000
3095 W$-.
3100 Z$-WS+. MVI B,'+NUM1S(Z%)\GOSUB 32000I3101 IF D%-3 THEN GOTO 3102 ELSE Z$-W$+' CALL PRINT"\GOSUB 32000\GOTO 3250
3102 Z$-W$+* CALL PRINT"\GOSUB 32000

\Z$., JMP NUL6"\GOSUS 32000
3110 Z$-" PRINT: MOV C,M'\GOSUB 32000I3120 ZS-WS+" CALL TTYOUT"\GOSUB 32000
3130 ZS-W$+" INX H'\GOSUB 32000
3140 ZS-W$+' DCR B"\GOSUB 32000
3150 Z$-W$+" JNZ PRINT"\GOSUB 32000
3160 Z$-W$+* JMP ENDPT*\GOSUB 32000
3170 Z$-*TTYOUT: IN TTYST"\GOSUE 32000
3180 ZS-WS+" ANI 04*\GOSUB 32000
3190 Z$-W$+" JNZ TTYOUT*\GOSUB 32000

3200 ZS-WS+' MOV A,C\GOSUB 32000
*3210 ZS-WS+" CM.A"\GOSUB 32000
*;3220 ZS-W$+" OUT 00"\GOSUS 32000

3230 zS-W$+' RET"\GOSUB 32000
3240 2S-"ENDPT: RET"\GOSUB 32000

\Z$-' NUL6: MOV A,A'\GOSUB 32000I3250 RETURN
3500 REM GOTO ROUTINE
3520 Z$-W$+' JMP "+VS\GOSU9 32000
3530 WW-
3540 RETURN
3700 REM GOSUB ROUTINE
3720 ZS-WS+' CALL '*V$\GOSUB 3200
3730 WS-"
3740 RETURN
3800 REM RETURN ROUTINEI3810 35-W$+" RET *\GOSUS 32000
3820 W$-"
3830 RETURN
4000 REM "MOVE" TO ROUTINEI4010 IF CI%1 THEN GOTO 4100
4020 GOStJB 180
4030 Z$-W$+" LXI H,"+VS\GOSUB 3200
4040 WS:"..M
4050 Z$ WS MOV E,M-\GOSUB 32000
4060 Z$-W$+* lNx H\GOSUS 32000
4070 ZS-W$+. MOV 0,M"\GOSUB 32000
4080 GOTO 4120

79

I4100 Z$-WS+" LXI D,"+V$\GOSUS 32000
4110 W$-*
4120 RETURN4
4200 REM MOVE *To" ROUTINE
4210 GOStIS 1800
4220 ZS$Ws+" LXI H,"#V$\GOS)B 32000
4230 Z$-W$+* MOV h,E"\GOSUB 32000
4240 ZS-W$+* NOV M,A"\GOSUB 32000
4250 ZS-w$+" INX E"\GOSUB 32000
4260 ZS-W$+" NOV A,D"\GOSUB 32000

4280 RETURN

4500 REM LABEL ROUTrINE

4520 RETURN

4700 REM IF THEN ELSE ROUTINE
470Z$-W$+" X HES\GOSUB 32000I ~ ~~~~4750 W$-W+IX "GSU 20

4760 ZS-WS+* NOV A,M"\GOSUB 32000
4770 Z$-W$+" NOV D,A"\GOSUB 32011

4775 ZS-W$+* PUSH D"\GOSUB 32000
4780 RETURN
4810 W%-V%
4820 RETURN
4825 REM CONDITION ROUTINE14327 Z$=W$+" POP D-\GOSUB 32000\WS-.

I4830 IF W%-l THEN GOSUB 5200
4835 IF WA-2 THEN GOSUB 5300
4940 IF W%-3 THEN GOSUB 5500
4845 IF W%-11 THEN GOSUB 5600I4850 IF W%-12 TEEN GOSUB 5800
4855 IF W%-13 THEN GOSUB 5190
4860 RETURN
4900 REM CONDITION ROUTINE
5100 Z$-W$+" LXI H,RESLIV\GOSUB 3200

\I- INX H*\GOSt78 32000
\Z$-" NOV A,M"\GOSUB 32000
\ZW CMP D"\GOSUB 3200

5110 Z$ml JNZ TBN*+NUM1S(T1%)\GOSUS 32000
\Z$-" DCX H"\GOSUB 32000

\I- NOV A,M"\GCSUB 32000
\Z$A' CMP E'\GOSUB 32000
\Zs-" JNZ TSN"+NUM1$(Tlt)\GOSUB 32000
\Zs., JKP ELS*.NraM1$(E1%)\GOSUB 32000I 5160 RETURN

5200 Zaw.* LxI 9,RESLI*\GOSUS 3200e
\ZS*WS+ INX HB\GOSUB 32000
\Z~oWS+" NOV A,M"\GOSUB 32000
\ZS.VS+" CNP D*\GOSUR 22000
\Z$*WS* JC THN*%NUM1S(T1%)\GOSUB 32000
\ZS-WS. DCX H"\GOSUB 32000
\ZS-W$+" NOV A,M*\GOSUB 32000
\ZS-WS." CM? E*\GOSUZ 32000
\Z~mW$4" JC THN".NUMIS(TltAP\GOSUB 32000

80

\ZaW+' JMP ELS*+NU41S(Elt)\GOSUB 32000
5290 RETURN~
5300 Z$-W$*" LXI H,RESLV'\GOSUB 32006

\Z$-* INX H"\GOSUB 32800
\z- NOV A,.N*\GOSUS 32000

\ZWCMP D'\GOSUB 32000
\Z$-* C ELS"+NUM1$(El%)\GOSUB 32090

5310 Z$= 3HZ THN"+NUM2$(Tl%)\GOSUB 3200
\Z$U' DCX H"\GOSUB 32000
\Z$-* MPV E,\GSUB 32000
\Z$NOV CM ,"\GOSUO 3200

\Z$-" 3C ELS"+NUMI$(E%)\GOSJB 32009
\Zs.* JZ ELS"+NUMI$(Elt)\GOSUT3 32009

5420' REJ~ MP THN+tIM1$(T1%)\GOSUB 3200
5500 Z$-WS+" LXI H,RESL1'\GOSUB 32000

\ZS.u INX EU\GOSUB 32000
\Z$S" NOV A,M\GOSOE 32000

\zS- CMP D"\GOSUB 32000
\Z$-* JNZ ELS*+NIM1$(El%)\GOSIB 32080
\ZS-" DCX H'\GOSUB 32000

5510 Z$= NOV A,M*\GOSUB 32000
\Z$-" CMP E"\GOSUB 32000
\ZS-" 3JZ ELS"+NtIN1$(Ea%)\GOSUB 32000
\Z$-* JMP THN"+NEJM1$(Tlt)\GOSUB 320e0

5595 RETURN
5600 ZOW+" LXI H,RESL1'\GOSUB 32000

\ZS-1 INX H0\GOSIS 3209
\Z$.* NOV A,M"\GOSUB 32000
\Z$.* ClP D*\GOSUB 32000

5605 Z$-" JC THN"+NUM1$(T1%)\GOSUB 32009
\z$-* 3JZ ELS"4-NUM1S(El%)\GOSUB 32000
\z$-" DCX 8"\GOSUB 320001.J~ 5610 Zs." NOV A,M"\GOSUB 28 32000

\Z$.. JC TBN"+NUM1$(rl%)\GOSUB 32000
\Z$-, JP ELS"+NUM$(E%)\GOSlB 32000

5710 RE'TURN
5800 ZS-WS+" LXI SRESL1'\GOSUB 32000

\Z$-"INX II"\GOSUB 320001Z- NOV A,M*\GOSUB 32000
\z$-, C14P D'\GOSUB 32000
\Z$-, C ELS'%NUM1$(Elt)\GOSUB 32800

5810 Z$W DCX H"\GOSUB 32000
\Z$.- NOV A,M"\GOSUS 32000

\ZI CMP E*\GOSUB 320800
\Z$-* 32 TBN"+NM1$(Tl%)\GOSUB 32000
\Z$-" JC ELS"+NUMI$(El%)\GOSUB 3280
\Z$-* JMP TBNO+NUM1$(Tlt)\GOSUB 3288

5895 RETURN
6600 REM TEN RUTNE4

6 0RETUNRON

610REMI ELSE ROUTINE

6118 WS-'ELS'NU1S(El%)":*

81

\Z$-" JMP NXT"%NUM1$(E1%)
\GOSUB 32000
\RETURN

6200 ZS-' NXT*+NUM1$(E1%)+": MOV A,A"\GOSUB 32000
6210 RETURNI6500 REM END ROUTINE
6510 Z$-W$+" JMP 03800"\GOSUB 32000\W$-= '\RETURN
7000 REM EXPRESSION ROUTINE
7010 IF C%-1 THEN GOTO 7020 ELSE GOSUB 1800
7920 E2$(E2%)-V$

\E2%-E2%+l
7930 IF 51%-l TEEN GOTO 7500
7940 RETURN
7109 E2$(E2%)=V1S

\E2%-E2%+l
7120 RETURN
7200 E2$CE2%)=V1$

7210 E2%-E2%+1
4220 Sl%-l
7225 RETURN
7500 E5%-E2%

\IF Vl$-**' TEEN GOSUB 10006
7505 IF VS-'/- THEN GOSUB 12000
7510 E2$(E2%)-"

\E2$(E2*-2)=*
\E2 %aE2%- 3

7540 E2SCE2%)-"RESL'%NUMlS(A1%)
37550 R1%=Rl%+l

\E2%aE2%+l
\S1%=6

7560 RETURN
7600 E2S(E2%)-V1S
7605 E3%-E2%
7610 E2%-E2%+l
7620 RETURN
7700 ESS-E3%.2
7710 E5%-E5%+2
7715 IF E51>E2% THEN GOTO 7300
7720 IF E2$(E5%-2)-"- TEEN GOSUB 9000\GOTO 7740

7730 IF E2S(ES%-2) - TEEN GOSUS 9500 ELSE GOTO 7800
7740 E2$(E5%-1} ="RESL+NUMS(Rl%)

\GOTO 7710
7800 E2%-E3%

\E2S E2%)"*
\E2%oE2%41l
\E2$ (E2%) .RESL*NUM1S (R1%)
\E2 %E2 1.1

IF SU 7510E GT 70

795RETURN790II2<2TE OO70
I,~A-

82

\IF Y%-9 THEN Z$=W$S* LXI tO,'.E2$(E2%-l)\GOSUB 32000

\GOTO 7953I 7982 ZS-W$+* LXI 8,*%E2$(E2%-)\GOS]B 32008

\ZS.W5+" NOV E,M"\GOSUB 32000
\Z$SWS+* INX H"\GOSUB 32000
\Z-WS+' MOV D,M"\GOS3B 32000I \GOTO 7950

7905 E5%-2
7907 E5%-E5%+2

\IF E5%>E2% THEN GOTO 7950
7910 IF E2$(E5%-2)+" THEN GOSUB 9000\GOTO 7930

7920 IF E2$(E5%-2)- THEN GOStJB 9500 ELSE GOTO 7950
7930 E2S(E5%-l)-"RESL"+NUMIS(Rl%)
7940 GOTO 7907
7950 Z-WS+* LXI H,P.ESL1"\GOSUB 32000

\Z$-W$+" NOV M,E"\GOSUB 32000
\ZS-WS+" INX H"\GOSUB 3200

7955 1S-W$+' NOV M,D"\GCSUB 32000
7960 E2%=2\R1%-1\Slt%0I \RETURN
8000 RETURN
9000 REM ADD INSTRUCTIONS TO LOAD REGISTERS
9810 GOSUB 25000I9200 Z$-WS+" XCHG*\GOSUB 32000

\Zs-" DAD B*\GOSUB 32000
\W$-'

9210 Z$-W$+" XCHG*\GCSUB 32000
\Z$-* LXI 8,RESL"+NUMlS(Rlt)\GCStUB 32000
\Z$-' NOV M,E"\GOSUB 32008
\Z$-" INX 9"\GOSUB 32030

9223 Z$-W$+" NOV M,D"\GOSU% 32333
\E2$ (E2%+l)-'RESL"+NUN1S (Rl%)

9229 RETURN
9530 REM SUBTRACT INSTRUCTION/MUST LOAD REGISTERS
9510 GOSUB 25000
9690 IF S2%-l THEN GOTO 9910
9610 ZS-W$+" CALL SUBT"\GOSUB 32000IZ" JMP NUL3"\GOSUB 32000

9700 ZS.StJBT; NOV A,E*\GOSUB 32000
9705 W$-"
9713 ZS-W5+* CMA"\GOSUB 32030
9720 Z$-WS+* ADI 1"\GOSUB 32000
9725 ZS-W$+* NOV E.A"\GOSUS 32000

9733 Z$-W*-" JC CARRY"\GOSUB 32003
9758 ZS.W$+* JMP SECND-\GOSUB 32333
9760 Z$-CARRY: MOV A,D*\GOSUB 32000I9770 Z$.WS'* CNA*\GOSUB 32000
9783 ZS-WS+* ADI 1"\GOSUB 32338
9790 ZS-WS+* NOV D,A"\GOSUB 3230
9800 ZS-W$+" JMP DADD*\GOSUB 3203
9813 ZS."SECND: NOV A,D#\GOSUJB 32083
9820 ZS-WS-* CMA*\GOSUB 3280
9833 ZS.WS** NOV D,A"\GOSUS 32000

9840 Z$-' DADO: XCHG"\GOSUB 32000
\Z$-" DAD B"\GOSUB 32000I \GOStTB 9210

9860 S2%=1
\Z$-' RET"\GOSUB 32000

\ZS-"NJL3: MDV A,A"\GOSJ3 32000
9900 RETURNI 9910 ZS-WS+ CALL SUBT*\GOSUB 32000

\ RETU RN
10000 REM MULTIPLICATION ROUTINE
10002 GOSUB '25000I10006 IF M1%J. THEN COTO 10700
10007 ZS-WS' CALL MULT"\GOSUB 32000

\Z$.. JMP NUL4"\GOSUB 32000

102 S"- MULT: MVI B,O0\GOSUB 32000
\Z$-- MOV D,E"\GOSUB 32000

10210 Z$ WS+" MVI E,9"'\GOSUB 32000
10220 ZS-'MULTO: MOV A,C*\GOSUB 32000
10230 Z$-WS+" RAR"\GOSUB 32000
10240 ZS-W$+' MOV C,A*\GCSUB 32000

U10250 ZS-WS+" DCR E"\GOSUB 32000
10260 ZS-W$+" JZ DONE"\GOSUB 32000
10270 Z$-WS+* MOV AB"\GOSUB 32000
10280 ZS-W$+* JNC MULTI1\GOSUS 32000I10290 Z$-W$+" ADD D"\GOSUB 32000
10300 %ZS*MUILTl: RAP*\GDSUB 32000
10310 IZS-WS+* MDV B,A"\GOSUB 32000
10320 Z$=" JMP MULTO"\GOSUB 32000

\M1%-1
F.7- \ZS-" DONE: RET"\GOSUB 32000

\ZS-" NUL4: MOV A,A'\GOSUB 32000
10330 ZS-* LXI 8,RESL"+NUM1$(R,%)\GOSUB 32000

- NOV M,C\GOSUB 32000
\ZS-' INX H"\GOSUB 32000

\ZS-" MDV M,B"\GOSUB 32000
\E25 (E2%-l) =RESL"+NUM1S (P.%)

10500 RETURN
10700 Z$-W$+" CALL MULTI\GO2SUB 32000

\GOSUB 10330

12000 RE IIINROUTINE 320 300

12002 GU2
12006 2F D V: THOV ACOTO S 32000
1220 ZS-WS+" CALGSU 320\UB00 0I 1220 ZWS- NOV DA 5\GOSU S 32000
12230 ZSWS.IV MV A,*\GOSUS 32000
12240 ZSWS#" CMA"',GOSUB 32000
12250 .'$-WS+* MDV E,A*\GOSUB 32000
12230 zs-W$** ZNO' AZ\GOSUS 32000
12270 IS-W+ CMOV ,\GOZB 32000

1250 ZS+ NOV E ,0\GO r 32000

"ZS-* Lx: S5,0\COSUB 3:000

I3

12280 Z$-"DIVDE: DAD D"\GOSUB 32000
\Z$-" NOV A,H*\GOSUB 32000
\Z$-" RAL"\GOSUB 32000

\I- JC FNDIV"\GOSUB 32000
12290 ZS-" INX B"\GOSUB 32000

\Zs_* JMP DIVE"\GOSUB 32000
\Z$-"FNDIV: XRA A"\GOSUB 32000I 1250 0 - RET*\GOSUB 32000
\Z$-" NUL5: NOV A,A"\GOSUB 32000

12600 Z$-WS'" LXI H, RES L"+N UMi$(a' t! %);'j3 2_
\zs-w NOV M,Cm\GOSUB 32000IZd INX H"\GOSUB 32000
\Z$.il NOV M,@-\GOSUB 32000

12620 E2S(E2%-1)-"RESL"+NUM! $(Rl%)
12650 RETURN
12700 Z$-WS+* CALL DIV*\GOSUB 32000I \GOSOB 12600

\ RETURN
15000 REM COMPUTE ROUTINE
15010 GOSUB 1800

\Z$-WS+" LXI H,RESL1"\GOSUB 32000

15015 Z$=WS+" MN'J D,M"\GOSUB 32000
\ZS=WS+" INX H"\GOSUB 32000
\ZS-WS+" NOV E,M"\GOSUB 32000

15020 Z$-WS+* LXI H,*+V$\GOSUB 32000

*Z-W+ NOV M,E"\GOSUS 32000

\RETURN

23100Z$-W$" NOV HESL"\GOSUB 32000

ZS-WS OG 010"\GOSU 3200
\Z$-W BYTE INX \GOSUB 3200
\ZS-WS" BYTV E 0\GOSUB 3200

20115 RM ROUIN9 T BTED ASB 32200 E IL

20010 IW$-0 HNB-GT 04
20130 Z5SL-+NN1R 1%)+:ORDB 3200\OU 20

\R1$-* BY\GTE 200"\O 20

- 20150 Z$-(B": BTE "+D(B\GOSUB 32100
2108B \ %- 0%-BYGT 00OU 2

20175 A%-I20180 IF A%<1O THEN GCT \OO 2 20 14
20190 ZS-*SA)": WO1$R 00GORDB 3200\GOTOB 32100

\RlS-RTTY T E 2U0120SB 20

20240 IF ERR-lOR GOTO) 26N000 217
20300 INPUTB)*" LINE **2%,ZS'\GOSU B 32100

20180 IF S'< T END G THE 2020 000ESE5OO200

209I$A(l-:WR 0\OU 20 GT 07
200 $"SV YT 0\OU 20

rZ.TY- Q l\CU 20
- - r--n. -"-r I EQU .00 -,-- -,3210

I

I
I

20400 RETURN
21130 Z$="RESL"+NUMI$(RI%)+* WORD 00"\GOSUB 32100\

R%-R%-I\GOTO 20120
25000 E4%-E5%-1
25002 FOR Y%= 1 TO 20
25004 IF AS(Y%)= E25(E4%) THEN GOTO 25100
25006 NEXT Y%
25010 FOR Y%- 1 TO 9

\IF E2$(E4%)="PESL"+NUM1$(Y%) THEN GOTO 25100
25020 NEXT Y%
25030 Z -W$+" LXI D,"+E2$(E4%)\GOSUB 32000
25035 W$="
25040 E4%-E5%-3

25042 FOR Y%- 1 TO 20
25044 IF A$(Y%)- E2$(E4%) THEN GOTO 25200
25046 NEXT Y%
25050 FOR Y%- 1 TO 9
25052 IF E2$(E4%)-*RESL"+NUMI$(Y%) THEN GOTO 25200
25054 NEXT Y%
25060 Z$-W$+" LXI B,"+E25(E4%)\GOSUB 32000\GOTC 25330
25100 Z$-W$+" LXI H,"+E2S(E4%)\GOSUB 3200
25110 WS-" =

\Z$WS+" MOV E,M"\GOSUB 32000

\Z$-W$+" INX H"\GOSUB 32000

\Z$=W$+" MOV D,M"\GOSUB 32000
\GOTO 25040

25200 ZS-W$+" LXI H,"+E2S(E4%)\GOSUB 32000
\ W - . =
\ZW+" MOV C,M'\GOSUB 32000

. \ZS-W$+ INX H*\GOSUB 32000
\ZS'W$+ MOV B,M"\GOSUB 32000

25300 RETURN
26000 RESUME 20490
32000 REM PRINT FILE ROUTINE... 32010 PRINT #2% USING ZS
32020 RETURN
32100 PRINT #1% USING Z$
32150 RETUiN
32500 REM SEMANTIC DECODE HERE
32510 IF P%-64 THEN GOSUB 7900\GOSUB 4825\GOSUB 6000\RETURN
32520 IF P%=72 THEN GOSUB 6100\RETURN

32530 IF P%=92 THEN GOSUB 4700\RETURN
32540 IF P%-132 THEN GOSUB 1900\RETURN
32550 IF P%-140 AND C%-2 THEN GOSUB 250\RETURN
32560 IF P%-144 THEN GOSUB 3000 \RETURN
32570 IF P%-152 THEN GOSUB 3500\aETURN
32580 IF P%-160 THEN GOSUB 3700 \RETURN
32590 IF P%-168 THEN GOSU8 4000\RETURN
32600 :F P%-176 THEN GOSUB 4200\RETURN
32610 IF P%-180 AND V%-8 THEN GOSUB -800\RETURN
32620 IF P%=196 THEN GCSUB 4500\RETURN
32630 :F (P%-256 OR P%-348) THEN GOSUB 7600,RETURN
32640 :F P%-260 OR P%-352) THEN GOSUB 7700'RETURN
32650 IF P%-264 AND :%-! THEN GOSUB 7000' RE7RN
32652 IF ?*-268 AND C%-2 THEN GOSUB 7000',RETURN

32654 IF (P%-:72 OR P1-224, THEN VIS-VSRET'2RN
3266. :F ,P%4-Z4, THEN GOSUB 7100,RETU-RN

I

7

32670 IF P%=240 THEN GOSUB 7200\RETURN
32680 IF P%-328 THEN GOSUB 15000\RETURN
32690 IF P%-324 THEN GOSUB 7900\RETURN
32692 IF P%-356 AND C%-3 THEN GOSUB 6500\RETURN
32695 IF P%-88 THEN GOSUB 7900\GOSUB 4810
32700 RETURN
32760 END

I
1
!

